A weak Asplund space whose dual is not in Stegall's class

Author:
Ondrej F. K. Kalenda

Journal:
Proc. Amer. Math. Soc. **130** (2002), 2139-2143

MSC (2000):
Primary 54C60, 26E25, 54C10

DOI:
https://doi.org/10.1090/S0002-9939-02-06625-X

Published electronically:
February 27, 2002

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that, under some additional set-theoretical assumptions which are equiconsistent with the existence of a measurable cardinal, there is a weak Asplund space whose dual, equipped with the weak* topology, is not in Stegall's class. This completes a result by Kenderov, Moors and Sciffer.

**[1]**M.Fabian,*Gâteaux differentiability of convex functions and topology: weak Asplund spaces*, Wiley-Interscience, New York, 1997. MR**98h:46009****[2]**M.Fosgeram, PhD thesis, Univ. College London, 1992, pp. 52-62.**[3]**R.Frankiewicz and K.Kunen,*Solution of Kuratowski's problem on function having the Baire property I.*, Fund. Math.**128**(1987), 171-180. MR**89a:03090****[4]**T.Jech, M.Magidor, W.Mitchell and K.Prikry,*Precipitous ideals*, J. Symb. Log.**45**(1980), 1-8. MR**81h:03097****[5]**Y.Kakuda,*On a condition for Cohen extensions which preserve precipitous ideals*, J. Symb. Log.**46**(2) (1981), 296-300. MR**82i:03062****[6]**O.Kalenda,*Stegall compact spaces which are not fragmentable*, Topol. Appl.**96**(2) (1999), 121-132. MR**2001i:45027****[7]**P.Kenderov, W.Moors and S.Sciffer,*A weak Asplund space whose dual is not weak* fragmentable*, Proc. Amer. Math. Soc.**129**(2001), 3741-3747.**[8]**P.Kenderov and J.Orihuela,*A generic factorization theorem*, Mathematika**42**(1) (1995), 56-66. MR**96h:54014****[9]**I.Kortezov,*Fragmentability of the dual of a Banach space with smooth bump*, Serdica Math. J.**24**(2) (1998), 187-198. MR**2000b:46028****[10]**D.A.Martin and R.M.Solovay,*Internal Cohen extensions*, Ann. Math. Logic**2**(1970), 143-178. MR**42:5787****[11]**I.Namioka and R.Pol,*Mappings of Baire spaces into function spaces and Kadec renorming*, Israel Jour. Math.**78**(1992), 1-20. MR**94f:46020****[12]**N.K.Ribarska,*The dual of a Gâteaux smooth Banach space is weak star fragmentable*, Proc. Amer. Math. Soc.**114**(4) (1992), 1003-1008. MR**92g:46020****[13]**R.M.Solovay,*On the cardinality of sets of reals*, Foundation of Mathematics, Symposium papers commemorating the sixtieth birthday of Kurt Gödel, Springer-Verlag, 1969, pp. 58-73. MR**43:3115****[14]**R.M.Solovay and S.Tennenbaum,*Iterated Cohen extensions and Souslin's problem*, Ann. of Math.**94**(1971), 201-245. MR**45:3212****[15]**C. Stegall,*A class of topological spaces and differentiability*, Vorlesungen aus dem Fachbereich Mathematik der Universität Essen**10**(1983), 63-77. MR**85j:46026****[16]**S.Ulam,*Zur Masstheorie in der allgemeinen Mengenlehre*, Fund. Math.**16**(1930), 140-150.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
54C60,
26E25,
54C10

Retrieve articles in all journals with MSC (2000): 54C60, 26E25, 54C10

Additional Information

**Ondrej F. K. Kalenda**

Affiliation:
Department of Mathematical Analysis, Sokolovská 83, 186 75 Praha 8, Czech Republic

Email:
kalenda@karlin.mff.cuni.cz

DOI:
https://doi.org/10.1090/S0002-9939-02-06625-X

Keywords:
Weak Asplund space,
fragmentable space,
Stegall's class of spaces

Received by editor(s):
April 5, 2000

Published electronically:
February 27, 2002

Additional Notes:
Partially supported by research grants GAUK 277/2001, GAČR 201/00/1466 and MSM 113200007.

Communicated by:
Jonathan M. Borwein

Article copyright:
© Copyright 2002
American Mathematical Society