Admissible vectors for the regular representation
HTML articles powered by AMS MathViewer
- by Hartmut Führ
- Proc. Amer. Math. Soc. 130 (2002), 2959-2970
- DOI: https://doi.org/10.1090/S0002-9939-02-06433-X
- Published electronically: March 12, 2002
- PDF | Request permission
Abstract:
It is well known that for irreducible, square-integrable representations of a locally compact group, there exist so-called admissible vectors which allow the construction of generalized continuous wavelet transforms. In this paper we discuss when the irreducibility requirement can be dropped, using a connection between generalized wavelet transforms and Plancherel theory. For unimodular groups with type I regular representation, the existence of admissible vectors is equivalent to a finite measure condition. The main result of this paper states that this restriction disappears in the nonunimodular case: Given a nondiscrete, second countable group $G$ with type I regular representation $\lambda _G$, we show that $\lambda _G$ itself (and hence every subrepresentation thereof) has an admissible vector in the sense of wavelet theory iff $G$ is nonunimodular.References
- S. T. Ali, J-P. Antoine and J-P. Gazeau, Coherent States, Wavelets and Their Generalizations, Springer-Verlag, New York, 2000.
- S.T. Ali, H. Führ and A. Krasowska, Plancherel inversion as unified approach to wavelet transforms and Wigner functions, submitted.
- Didier Arnal and Jean Ludwig, Q.U.P. and Paley-Wiener properties of unimodular, especially nilpotent, Lie groups, Proc. Amer. Math. Soc. 125 (1997), no. 4, 1071–1080. MR 1353372, DOI 10.1090/S0002-9939-97-03608-3
- David Bernier and Keith F. Taylor, Wavelets from square-integrable representations, SIAM J. Math. Anal. 27 (1996), no. 2, 594–608. MR 1377491, DOI 10.1137/S0036141093256265
- G. Bohnke, Treillis d’ondelettes associés aux groupes de Lorentz, Ann. Inst. H. Poincaré Phys. Théor. 54 (1991), no. 3, 245–259 (French, with English summary). MR 1122655
- A. L. Carey, Group representations in reproducing kernel Hilbert spaces, Rep. Math. Phys. 14 (1978), no. 2, 247–259. MR 527603, DOI 10.1016/0034-4877(78)90047-2
- Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 0458185
- M. Duflo and Calvin C. Moore, On the regular representation of a nonunimodular locally compact group, J. Functional Analysis 21 (1976), no. 2, 209–243. MR 0393335, DOI 10.1016/0022-1236(76)90079-3
- Gerald B. Folland, A course in abstract harmonic analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397028
- Hartmut Führ, Wavelet frames and admissibility in higher dimensions, J. Math. Phys. 37 (1996), no. 12, 6353–6366. MR 1419174, DOI 10.1063/1.531752
- H. Führ and M. Mayer: Continuous wavelet transforms from semidirect products: Cyclic representations and Plancherel measure. J. Fourier Anal. Appl., to appear.
- A. Grossmann, J. Morlet, and T. Paul, Transforms associated to square integrable group representations. I. General results, J. Math. Phys. 26 (1985), no. 10, 2473–2479. MR 803788, DOI 10.1063/1.526761
- C. J. Isham and J. R. Klauder, Coherent states for $n$-dimensional Euclidean groups $E(n)$ and their application, J. Math. Phys. 32 (1991), no. 3, 607–620. MR 1093798, DOI 10.1063/1.529402
- Qingtang Jiang, Wavelet transform and orthogonal decomposition of $L^2$ space on the Cartan domain $BDI\ (q=2)$, Trans. Amer. Math. Soc. 349 (1997), no. 5, 2049–2068. MR 1373641, DOI 10.1090/S0002-9947-97-01727-3
- J. R. Klauder and R. F. Streater, A wavelet transform for the Poincaré group, J. Math. Phys. 32 (1991), no. 6, 1609–1611. MR 1109217, DOI 10.1063/1.529273
- R.S. Laugesen, N. Weaver, G. Weiss and E.N. Wilson, Continuous wavelets associated with a general class of admissible groups and their characterization. J. Geom. Anal., to appear.
- Ronald L. Lipsman, Non-Abelian Fourier analysis, Bull. Sci. Math. (2) 98 (1974), no. 4, 209–233. MR 425512
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- R. Murenzi, Ondelettes multidimensionelles et application à l’analyse d’images, Thèse, Université Catholique de Louvain, Louvain-La-Neuve, 1990.
- Nobuhiko Tatsuuma, Plancherel formula for non-unimodular locally compact groups, J. Math. Kyoto Univ. 12 (1972), 179–261. MR 299729, DOI 10.1215/kjm/1250523567
Bibliographic Information
- Hartmut Führ
- Affiliation: Zentrum Mathematik, TU München, D-80290 München, Germany
- Address at time of publication: Institut für Biomathematik und Biometrie, GSF-Forschungszentrum für Umwelt und Gesundheit, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
- Email: fuehr@gsf.de
- Received by editor(s): October 26, 2000
- Received by editor(s) in revised form: May 3, 2001
- Published electronically: March 12, 2002
- Communicated by: David R. Larson
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 2959-2970
- MSC (2000): Primary 43A30; Secondary 42C40
- DOI: https://doi.org/10.1090/S0002-9939-02-06433-X
- MathSciNet review: 1908919