Helgason-Marchaud inversion formulas for Radon transforms
HTML articles powered by AMS MathViewer
- by Boris Rubin
- Proc. Amer. Math. Soc. 130 (2002), 3017-3023
- DOI: https://doi.org/10.1090/S0002-9939-02-06554-1
- Published electronically: May 8, 2002
- PDF | Request permission
Abstract:
Let $X$ be either the hyperbolic space $\mathbb {H} ^{n}$ or the unit sphere $S^{n}$, and let $\Xi$ be the set of all $k$-dimensional totally geodesic submanifolds of $X, 1 \le k \le n-1$. For $x \in X$ and $\xi \in \Xi$, the totally geodesic Radon transform $f(x) \to \hat f(\xi )$ is studied. By averaging $\hat f(\xi )$ over all $\xi$ at a distance $\theta$ from $x$, and applying Riemann-Liouville fractional differentiation in $\theta$, S. Helgason has recovered $f(x)$. We show that in the hyperbolic case this method blows up if $f$ does not decrease sufficiently fast. The situation can be saved if one employs Marchaud’s fractional derivatives instead of the Riemann-Liouville ones. New inversion formulas for $\hat f(\xi ), f \in L^{p}(X)$, are obtained.References
- Carlos A. Berenstein and Enrico Casadio Tarabusi, Inversion formulas for the $k$-dimensional Radon transform in real hyperbolic spaces, Duke Math. J. 62 (1991), no. 3, 613–631. MR 1104811, DOI 10.1215/S0012-7094-91-06227-7
- Carlos A. Berenstein and Boris Rubin, Radon transform of $L^p$-functions on the Lobachevsky space and hyperbolic wavelet transforms, Forum Math. 11 (1999), no. 5, 567–590. MR 1705903, DOI 10.1515/form.1999.014
- —, Totally geodesic Radon transform of $L^{p}$-functions on real hyperbolic space, Preprint, 2001.
- Sigurđur Helgason, Differential operators on homogeneous spaces, Acta Math. 102 (1959), 239–299. MR 117681, DOI 10.1007/BF02564248
- Sigurdur Helgason, The totally-geodesic Radon transform on constant curvature spaces, Integral geometry and tomography (Arcata, CA, 1989) Contemp. Math., vol. 113, Amer. Math. Soc., Providence, RI, 1990, pp. 141–149. MR 1108651, DOI 10.1090/conm/113/1108651
- Sigurdur Helgason, The Radon transform, 2nd ed., Progress in Mathematics, vol. 5, Birkhäuser Boston, Inc., Boston, MA, 1999. MR 1723736, DOI 10.1007/978-1-4757-1463-0
- D. M. Oberlin and E. M. Stein, Mapping properties of the Radon transform, Indiana Univ. Math. J. 31 (1982), no. 5, 641–650. MR 667786, DOI 10.1512/iumj.1982.31.31046
- Boris Rubin, Fractional integrals and potentials, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 82, Longman, Harlow, 1996. MR 1428214
- —, Inversion formulas for the spherical Radon transform and the generalized cosine transform, Advances in Appl. Math. (to appear).
- —, Radon, cosine, and sine transforms on real hyperbolic space, Advances in Math. (to appear).
- Boris Rubin, Spherical Radon transform and related wavelet transforms, Appl. Comput. Harmon. Anal. 5 (1998), no. 2, 202–215. MR 1614459, DOI 10.1006/acha.1997.0228
- Robert S. Strichartz, $L^p$ estimates for Radon transforms in Euclidean and non-Euclidean spaces, Duke Math. J. 48 (1981), no. 4, 699–727. MR 782573, DOI 10.1215/S0012-7094-81-04839-0
Bibliographic Information
- Boris Rubin
- Affiliation: Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel
- MR Author ID: 209987
- Email: boris@math.huji.ac.il
- Received by editor(s): May 16, 2001
- Published electronically: May 8, 2002
- Additional Notes: This work was partially supported by the Edmund Landau Center for Research in Mathematical Analysis and Related Areas, sponsored by the Minerva Foundation (Germany).
- Communicated by: David Preiss
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 3017-3023
- MSC (2000): Primary 44A12; Secondary 52A22
- DOI: https://doi.org/10.1090/S0002-9939-02-06554-1
- MathSciNet review: 1908925