## Endpoint estimates for certain commutators of fractional and singular integrals

HTML articles powered by AMS MathViewer

- by Shanzhen Lu and Qiang Wu PDF
- Proc. Amer. Math. Soc.
**131**(2003), 467-477 Request permission

## Abstract:

In this paper, the authors obtain the endpoint estimates for a class of non-standard commutators with higher order remainders and their variants. Moreover, the authors show that these operators are actually not bounded in certain cases.## References

- B. Bajšanski and R. Coifman,
*On singular integrals*, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, R.I., 1967, pp. 1–17. MR**0238129** - A.-P. Calderón,
*Algebras of singular integral operators*, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, R.I., 1967, pp. 18–55. MR**0394309** - W. Chen and G. Hu, Weak type ($H^1,\, L^1$) estimate for a multilinear singular integral operator, Adv. in Math.,
**30:1**(2001), 63-69. - Jonathan Cohen and John Gosselin,
*A BMO estimate for multilinear singular integrals*, Illinois J. Math.**30**(1986), no. 3, 445–464. MR**850342** - Eleonor Harboure, Carlos Segovia, and José L. Torrea,
*Boundedness of commutators of fractional and singular integrals for the extreme values of $p$*, Illinois J. Math.**41**(1997), no. 4, 676–700. MR**1468874** - Steve Hofmann,
*On certain nonstandard Calderón-Zygmund operators*, Studia Math.**109**(1994), no. 2, 105–131. MR**1269771**, DOI 10.4064/sm-109-2-105-131 - Guo En Hu and Da Chun Yang,
*Multilinear oscillatory singular integral operators on Hardy spaces*, Chinese Ann. Math. Ser. A**18**(1997), no. 5, 569–578 (Chinese, with Chinese summary); English transl., Chinese J. Contemp. Math.**18**(1997), no. 4, 403–413 (1998). MR**1485336** - Elias M. Stein,
*Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR**1232192** - Q. Wu and D. Yang, On fractional multilinear singular integrals, Math. Nachr. to appear.

## Additional Information

**Shanzhen Lu**- Affiliation: Department of Mathematics, Beijing Normal University, Beijing 100875, People’s Republic of China
- Email: lusz@bnu.edu.cn
**Qiang Wu**- Affiliation: Department of Mathematics, Beijing Normal University, Beijing 100875, People’s Republic of China
- Received by editor(s): May 2, 2001
- Received by editor(s) in revised form: September 12, 2001
- Published electronically: May 17, 2002
- Additional Notes: This project was supported by the National 973 Foundation of China
- Communicated by: Andreas Seeger
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**131**(2003), 467-477 - MSC (2000): Primary 42B20; Secondary 47B38, 47A30, 42B30, 42B35
- DOI: https://doi.org/10.1090/S0002-9939-02-06548-6
- MathSciNet review: 1933338