Nehari and Carathéodory-Fejér type extension results for operator-valued functions on groups
Author:
Mihály Bakonyi
Journal:
Proc. Amer. Math. Soc. 131 (2003), 3517-3525
MSC (2000):
Primary 43A17, 47A57, 43A35, 47A20
DOI:
https://doi.org/10.1090/S0002-9939-03-06897-7
Published electronically:
February 20, 2003
MathSciNet review:
1991764
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a compact abelian group having the property that its character group
is totally ordered by a semigroup
. We prove that every operator-valued function
on
of the form
, such that the Hankel operator
is bounded, has an essentially bounded extension
with
. The proof is based on Arveson's Extension Theorem for completely positive functions on
-algebras. Among the corollaries we have a Carathéodory-Fejér type result for analytic operator-valued functions defined on such groups.
- 1. V.M. Adamjam, D.Z. Arov, and M.G. Krein, Infinite Hankel matrices and generalized Carathéodory-Fejér and Riesz problems, Functional Anal. Appl., Vol. 2(1968), 1-18. MR 38:2591
- 2.
W.B. Arveson, Subalgebras of
-algebras, Acta Math., 123(1969), 141-224. MR 40:6274
- 3. W.B. Arveson, Interpolation problems in nest algebras, J. Funct. Anal., Vol. 3(1975), 208-233. MR 52:3979
- 4. M. Bakonyi, The extension of positive definite operator-valued functions defined on a symmetric interval of an ordered group, Proc. Amer. Math. Soc., Vol. 130, No. 5(2002), 1401-1406.
- 5. M. Bakonyi and D. Timotin, The intertwining lifting theorem for ordered groups, to appear in J. Functional Anal.
- 6. R. Bruzual and M. Dominguez, Extensions of operator valued positive definite functions and commutant lifting on ordered groups, J. Functional Anal., Vol. 185, No. 2(2001), 456-473. MR 2002g:43005
- 7. C. Carathéodory and L. Fejér, Über den Zusammenhang der Extremen von harmonischen Funktionen mit ihren Koeffizienten und Über den Picard-Landauschen Satz, Rend. Circ. Mat. Palermo, Vol. 32(1911), 193-217.
- 8. M. Dominguez, Interpolation and prediction problems for connected abelian groups, Integral Equations Operator Theory, Vol. 40, No. 2(2001), 212-230. MR 2002c:47030
- 9. C. Foias and A.E. Frazho, The Commutant Lifting Approach to Interpolation Problems, Birkhäuser Verlag, Basel-Boston-Berlin, 1990. MR 92k:47033
- 10. H. Helson and D. Lowdenslager, Prediction theory and Fourier series in several variables I, Acta Mathematica, Vol. 99(1958), 165-202. MR 20:4155
- 11. M.G. Krein, Sur le probléme de prolongement des functions hermitiniennes positives et continues, Dokl. Akad. Nauk. SSSR, Vol. 26(1940), 17-22. MR 2:361h
- 12. Z. Nehari, On bounded bilinear forms, Annals of Math., Vol. 65(1957), 153-162. MR 18:633f
- 13. V. Paulsen, Completely Bounded Maps and Dilations, Pitman Research Notes in Mathematics, Vol. 146, New York, 1986. MR 88h:46111
- 14. V.I. Paulsen, S.C. Power, and R.G. Smith, Schur products and matrix completions, J. Funct. Anal., Vol. 85(1989), 151-178. MR 90j:46051
- 15. L. Rodman, I. Spitkovsky, and H.J. Woerdeman, Carathéodory-Toeplitz and Nehari problems for matrix valued almost periodic functions, Trans. Amer. Math. Soc., Vol. 350, No. 6(1998), 2185-2227. MR 98h:47023
- 16. L. Rodman, I. Spitkovsky, and H.J. Woerdeman, Contractive extension problems for matrix valued almost periodic functions of several variables, J. Operator Theory, Vol. 47(2002), 3-35.
- 17. L. Rodman, I. Spitkovsky, and H.J. Woerdeman, Multiblock problems for almost periodic matrix functions of several variables, New York Journal of Math., Vol. 7(2001), 117-148. MR 2002h:42013
- 18. L. Rodman, I. Spitkovsky, and H.J. Woerdeman, Abstract band method via factorization, positive and band extensions of multivariable almost periodic matrix functions, and spectral estimation, to appear in the Memoirs of the AMS.
- 19. W. Rudin, Fourier Analysis on Groups, Interscience Publishers, New York, 1962. MR 27:2808
- 20.
Z. Sasvári,
Positive Definite and Definitizable Functions,
Akademie Verlag, Berlin, 1994. MR 95c:43005 - 21. I. Spitkovsky and H.J. Woerdeman, The Carathéodory-Fejér problem for almost periodic functions, J. Funct. Anal., Vol. 115(1993), 281-293. MR 94f:47020
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 43A17, 47A57, 43A35, 47A20
Retrieve articles in all journals with MSC (2000): 43A17, 47A57, 43A35, 47A20
Additional Information
Mihály Bakonyi
Affiliation:
Department of Mathematics, Georgia State University, Atlanta, Georgia 30303-3083
Email:
mbakonyi@cs.gsu.edu
DOI:
https://doi.org/10.1090/S0002-9939-03-06897-7
Received by editor(s):
March 6, 2002
Received by editor(s) in revised form:
June 16, 2002
Published electronically:
February 20, 2003
Communicated by:
Joseph A. Ball
Article copyright:
© Copyright 2003
American Mathematical Society