Dendrites and light mappings
HTML articles powered by AMS MathViewer
- by Janusz J. Charatonik and Paweł Krupski
- Proc. Amer. Math. Soc. 132 (2004), 1211-1217
- DOI: https://doi.org/10.1090/S0002-9939-03-07270-8
- Published electronically: October 29, 2003
- PDF | Request permission
Abstract:
It is shown that a metric continuum $X$ is a dendrite if and only if for every compact space (continuum) $Y$ and for every light confluent mapping $f: Y \to f(Y)$ such that $X \subset f(Y)$ there is a copy $X’$ of $X$ in $Y$ for which the restriction $f|X’: X’ \to X$ is a homeomorphism. As a corollary it follows that only dendrites have the lifting property with respect to light confluent mappings. Other classes of mappings $f$ are also discussed. This is a continuation of a previous study by the authors (2000), where open mappings $f$ were considered.References
- Janusz J. Charatonik, Włodzimierz J. Charatonik, and PawełKrupski, Dendrites and light open mappings, Proc. Amer. Math. Soc. 128 (2000), no. 6, 1839–1843. MR 1751997, DOI 10.1090/S0002-9939-00-05693-8
- J. J. Charatonik, W. J. Charatonik, and S. Miklos, Confluent mappings of fans, Dissertationes Math. (Rozprawy Mat.) 301 (1990), 86. MR 1055706
- J. J. Charatonik and K. Omiljanowski, On light open mappings, Baku International Topological Conference Proceedings, ELM, Baku, 1989, pp. 211–219.
- R. Engelking and A. Lelek, Metrizability and weight of inverses under confluent mappings, Colloq. Math. 21 (1970), 239–246. MR 263041, DOI 10.4064/cm-21-2-239-246
- W. T. Ingram, $C$-sets and mappings of continua, Proceedings of the 1982 Topology Conference (Annapolis, Md., 1982), 1982, pp. 83–90. MR 696623
- Józef Krasinkiewicz, Path-lifting property for 0-dimensional confluent mappings, Bull. Polish Acad. Sci. Math. 48 (2000), no. 4, 357–367. MR 1797901
- K. Kuratowski, Topology. Vol. II, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1968. New edition, revised and augmented; Translated from the French by A. Kirkor. MR 0259835
- A. Lelek and David R. Read, Compositions of confluent mappings and some other classes of functions, Colloq. Math. 29 (1974), 101–112. MR 367900, DOI 10.4064/cm-29-1-101-112
- T. Maćkowiak, Continuous mappings on continua, Dissertationes Math. (Rozprawy Mat.) 158 (1979), 95. MR 522934
- Tadeusz Maćkowiak, Singular arc-like continua, Dissertationes Math. (Rozprawy Mat.) 257 (1986), 40. MR 881290
- T. Maćkowiak and E. D. Tymchatyn, Some properties of open and related mappings, Colloq. Math. 49 (1985), no. 2, 175–194. MR 830801, DOI 10.4064/cm-49-2-175-194
- T. Maćkowiak and E. D. Tymchatyn, Some classes of locally connected continua, Colloq. Math. 52 (1987), no. 1, 39–52. MR 891496, DOI 10.4064/cm-52-1-39-52
- J. Mioduszewski, On continuous selections of multi-valued functions on dendrites, Prace Mat. 5 (1961), 73–77 (Polish, with Russian and English summaries). MR 0130674
- S. B. Nadler, Jr., Continua determined by surjections of various types, preprint.
- J. J. Corliss, Upper limits to the real roots of a real algebraic equation, Amer. Math. Monthly 46 (1939), 334–338. MR 4, DOI 10.1080/00029890.1939.11998880
Bibliographic Information
- Janusz J. Charatonik
- Affiliation: Instituto de Matemáticas, UNAM, Circuito Exterior, Ciudad Universitaria, 04510 México, D. F., México
- Email: jjc@matem.unam.mx
- Paweł Krupski
- Affiliation: Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
- Email: krupski@math.uni.wroc.pl
- Received by editor(s): March 14, 2001
- Received by editor(s) in revised form: February 4, 2002
- Published electronically: October 29, 2003
- Communicated by: Alan Dow
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 132 (2004), 1211-1217
- MSC (2000): Primary 54C60, 54C65, 54E40, 54F50
- DOI: https://doi.org/10.1090/S0002-9939-03-07270-8
- MathSciNet review: 2045440