Dense subsets of the boundary of a Coxeter system
Author:
Tetsuya Hosaka
Journal:
Proc. Amer. Math. Soc. 132 (2004), 3441-3448
MSC (2000):
Primary 57M07, 20F65, 20F55
DOI:
https://doi.org/10.1090/S0002-9939-04-07480-5
Published electronically:
May 12, 2004
Addendum:
Proc. Amer. Math. Soc. (133) 2005, 3745-3747
MathSciNet review:
2073322
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper, we investigate dense subsets of the boundary of a Coxeter system. We show that for a Coxeter system , if
is quasi-dense in
and the order
for some
, then there exists a point
in the boundary
of the Coxeter system
such that the orbit
is dense in
. Here
. We also show that if the set
is quasi-dense in
, then
is dense in
.
- 1. N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- 2. Philip L. Bowers and Kim Ruane, Fixed points in boundaries of negatively curved groups, Proc. Amer. Math. Soc. 124 (1996), no. 4, 1311–1313. MR 1343682, https://doi.org/10.1090/S0002-9939-96-03478-8
- 3. Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486
- 4. Kenneth S. Brown, Buildings, Springer-Verlag, New York, 1989. MR 969123
- 5. Michael W. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. (2) 117 (1983), no. 2, 293–324. MR 690848, https://doi.org/10.2307/2007079
- 6. Michael W. Davis, Nonpositive curvature and reflection groups, Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 373–422. MR 1886674
- 7. Michael W. Davis, The cohomology of a Coxeter group with group ring coefficients, Duke Math. J. 91 (1998), no. 2, 297–314. MR 1600586, https://doi.org/10.1215/S0012-7094-98-09113-X
- 8. É. Ghys and P. de la Harpe (eds.), Sur les groupes hyperboliques d’après Mikhael Gromov, Progress in Mathematics, vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1990 (French). Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988. MR 1086648
- 9. Tetsuya Hosaka, Parabolic subgroups of finite index in Coxeter groups, J. Pure Appl. Algebra 169 (2002), no. 2-3, 215–227. MR 1897344, https://doi.org/10.1016/S0022-4049(01)00068-8
- 10. James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460
- 11. G. Moussong, Hyperbolic Coxeter groups, Ph.D. thesis, The Ohio State University, 1988.
- 12. Jacques Tits, Le problème des mots dans les groupes de Coxeter, Symposia Mathematica (INDAM, Rome, 1967/68) Academic Press, London, 1969, pp. 175–185 (French). MR 0254129
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 57M07, 20F65, 20F55
Retrieve articles in all journals with MSC (2000): 57M07, 20F65, 20F55
Additional Information
Tetsuya Hosaka
Affiliation:
Department of Mathematics, Utsunomiya University, Utsunomiya, 321-8505, Japan
Email:
hosaka@cc.utsunomiya-u.ac.jp
DOI:
https://doi.org/10.1090/S0002-9939-04-07480-5
Keywords:
Boundaries of Coxeter groups
Received by editor(s):
April 15, 2003
Received by editor(s) in revised form:
August 4, 2003
Published electronically:
May 12, 2004
Additional Notes:
The author was partly supported by a Grant-in-Aid for Scientific Research, The Ministry of Education, Culture, Sports, Science and Technology, Japan, (No. 15740029)
Communicated by:
Ronald A. Fintushel
Article copyright:
© Copyright 2004
American Mathematical Society