A lower bound for the stability radius of time-varying systems

Authors:
Adina Luminita Sasu and Bogdan Sasu

Journal:
Proc. Amer. Math. Soc. **132** (2004), 3653-3659

MSC (2000):
Primary 34D05

DOI:
https://doi.org/10.1090/S0002-9939-04-07513-6

Published electronically:
July 26, 2004

MathSciNet review:
2084088

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce and characterize the stability radius of systems whose state evolution is described by linear skew-product semiflows. We obtain a lower bound for the stability radius in terms of the Perron operators associated to the linear skew-product semiflow. We generalize a result due to Hinrichsen and Pritchard.

**1.**J. A. Ball, I. Gohberg, and M. A. Kaashoek,*Two-sided Nudelman interpolation for input-output operators of discrete time-varying systems*, Integral Equations Operator Theory**21**(1995), 174-211. MR**95m:47018****2.**J. A. Ball, I. Gohberg, and M. A. Kaashoek,*Input-output operators of J-unitary time-varying continuous time systems*, Oper. Theory Adv. Appl.**75**(1995), 57-94. MR**96c:47109****3.**J. A. Ball, I. Gohberg, and M. A. Kaashoek,*A frequency response function for linear, time-varying systems*, Math. Control Signals Systems**8**(1995), 334-351. MR**97h:93014****4.**C. Chicone and Y. Latushkin,*Evolution Semigroups in Dynamical Systems and Differential Equations*, Mathematical Surveys and Monographs, vol. 70, Amer. Math. Soc., Providence, RI, 1999. MR**2001e:47068****5.**S.-N. Chow and H. Leiva,*Existence and roughness of the exponential dichotomy for linear skew-product semiflows in Banach space*, J. Differential Equations**120**(1995), 429-477. MR**97a:34121****6.**S.-N. Chow and H. Leiva,*Unbounded perturbation of the exponential dichotomy for evolution equations*, J. Differential Equations**129**(1996), 509-531. MR**98d:34090****7.**S. Clark, Y. Latushkin, S. Montgomery-Smith, and T. Randolph,*Stability radius and internal versus external stability in Banach spaces: an evolution semigroup approach*, SIAM J. Control Optimization**38**(2000), 1757-1793. MR**2001k:93085****8.**D. Hinrichsen, A. Ilchmann, and A. J. Pritchard,*Robustness of stability of time-varying linear systems*, J. Differential Equations**82**(1989), 219-250. MR**91b:93122****9.**D. Hinrichsen and A. J. Pritchard,*Robust stability of linear operators on Banach spaces*, SIAM J. Control Optim.**32**(1994), 1503-1541. MR**95i:93109****10.**Y. Latushkin, S. Montgomery-Smith, and T. Randolph,*Evolutionary semigroups and dichotomy of linear skew-product flows on spaces with Banach fibers*, J. Differential Equations**125**(1996), 73-116. MR**97a:47056****11.**Y. Latushkin and R. Schnaubelt,*Evolution semigroups, translation algebras and exponential dichotomy of cocycles*, J. Differential Equations**159**(1999), 321-369. MR**2000k:47054****12.**M. Megan, B. Sasu, and A. L. Sasu,*On nonuniform exponential dichotomy of evolution operators in Banach spaces*, Integral Equations Operator Theory**44**(2002), 71-78. MR**2003d:47058****13.**M. Megan, A. L. Sasu, and B. Sasu,*Discrete admissibility and exponential dichotomy for evolution families*, Discrete Contin. Dynam. Systems**9**(2003), 383-397. MR**2003k:47054****14.**M. Megan, A. L. Sasu, and B. Sasu,*Stabilizability and controllability of systems associated to linear skew-product semiflows*, Rev. Mat. Complutense**15**(2002), 599-618. MR**2004b:93114****15.**M. Megan, A. L. Sasu, and B. Sasu,*Theorems of Perron type for uniform exponential dichotomy of linear skew-product semiflows*, Bull. Belg. Math. Soc. Simon Stevin**10**(2003), 1-21.**16.**M. Megan, A. L. Sasu, and B. Sasu,*Perron conditions for uniform exponential expansiveness of linear skew-product flows*, Monatsh. Math.**138**(2003), 145-157.MR**2003k:47055****17.**M. Megan, A. L. Sasu, and B. Sasu,*Perron conditions for pointwise and global exponential dichotomy of linear skew-product flows*, accepted for publication in Integral Equations Operator Theory.**18.**M. Megan, A. L. Sasu, and B. Sasu,*Uniform exponential dichotomy and admissibility for linear skew-product semiflows*, Oper. Theory Adv. Appl. (2003).**19.**M. Megan, A. L. Sasu, and B. Sasu,*Theorems of Perron type for uniform exponential stability of linear skew-product semiflows*, accepted for publication in Dynam. Contin. Discrete Impuls. Systems.**20.**R. J. Sacker and G. R. Sell,*Dichotomies for linear evolutionary equations in Banach spaces*, J. Differential Equations**113**(1994), 17-67.MR**96k:34136**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
34D05

Retrieve articles in all journals with MSC (2000): 34D05

Additional Information

**Adina Luminita Sasu**

Affiliation:
Department of Mathematics, Faculty of Mathematics and Computer Science, West University of Timişoara, Romania

Email:
sasu@math.uvt.ro

**Bogdan Sasu**

Affiliation:
Department of Mathematics, Faculty of Mathematics and Computer Science, West University of Timişoara, Romania

Email:
lbsasu@yahoo.com

DOI:
https://doi.org/10.1090/S0002-9939-04-07513-6

Keywords:
Linear skew-product semiflows,
stability radius

Received by editor(s):
April 7, 2003

Received by editor(s) in revised form:
August 24, 2003

Published electronically:
July 26, 2004

Communicated by:
Joseph A. Ball

Article copyright:
© Copyright 2004
American Mathematical Society