Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Secant varieties of Grassmann varieties
HTML articles powered by AMS MathViewer

by M. V. Catalisano, A. V. Geramita and A. Gimigliano PDF
Proc. Amer. Math. Soc. 133 (2005), 633-642 Request permission

Abstract:

We consider the dimensions of the higher secant varieties of the Grassmann varieties. We give new instances where these secant varieties have the expected dimension and also a new example where a higher secant variety does not.
References
  • J. Alexander and A. Hirschowitz, Polynomial interpolation in several variables, J. Algebraic Geom. 4 (1995), no. 2, 201–222. MR 1311347
  • Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi, Algebraic complexity theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 315, Springer-Verlag, Berlin, 1997. With the collaboration of Thomas Lickteig. MR 1440179, DOI 10.1007/978-3-662-03338-8
  • M. V. Catalisano, A. V. Geramita, and A. Gimigliano, Ranks of tensors, secant varieties of Segre varieties and fat points, Linear Algebra Appl. 355 (2002), 263–285. MR 1930149, DOI 10.1016/S0024-3795(02)00352-X
  • M. V. Catalisano, A. V. Geramita, and A. Gimigliano, Erratum to: “Ranks of tensors, secant varieties of Segre varieties and fat points” [Linear Algebra Appl. 355 (2002), 263–285; MR1930149 (2003g:14070)], Linear Algebra Appl. 367 (2003), 347–348. MR 1976931, DOI 10.1016/S0024-3795(03)00455-5
  • Richard Ehrenborg, On apolarity and generic canonical forms, J. Algebra 213 (1999), no. 1, 167–194. MR 1674676, DOI 10.1006/jabr.1995.6649
  • Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1992. A first course. MR 1182558, DOI 10.1007/978-1-4757-2189-8
  • D.R.Grayson, M.E.Stillman, Macaulay 2, a software system devoted to supporting research in algebraic geometry, www.math.uiuc.edu .
  • D. Yu. Nogin, The spectrum of codes associated with the Grassmannian variety $G(3,6)$, Problemy Peredachi Informatsii 33 (1997), no. 2, 26–36 (Russian, with Russian summary); English transl., Problems Inform. Transmission 33 (1997), no. 2, 114–123. MR 1663924
  • F.Palatini. Sulle varietà algebriche per le quali sono di dimensione minore dell’ ordinario, senza riempire lo spazio ambiente, una o alcuna delle varietà formate da spazi seganti. Atti Accad. Torino Cl. Scienze Mat. Fis. Nat. 44 (1909). 362-375.
  • A.Terracini. Sulle $V_{k}$ per cui la varietà degli $S_{h}$ $(h+1)$-seganti ha dimensione minore dell’ordinario. Rend. Circ. Mat. Palermo 31 (1911). 392-396.
  • W.Wakeford. On canonical forms. Proc. London Math. Soc. 18 (1919/20). 403-410.
  • F. L. Zak, Tangents and secants of algebraic varieties, Translations of Mathematical Monographs, vol. 127, American Mathematical Society, Providence, RI, 1993. Translated from the Russian manuscript by the author. MR 1234494, DOI 10.1090/mmono/127
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14M15, 15A75
  • Retrieve articles in all journals with MSC (2000): 14M15, 15A75
Additional Information
  • M. V. Catalisano
  • Affiliation: DIPEM, Facoltá di Ingegneria, Università di Genova, Italy
  • Email: catalisano@dipem.unige.it
  • A. V. Geramita
  • Affiliation: Dipartimento di Matematica, Università di Genova, Italy — and — Department of Mathematics and Statistics, Queens’ University, Kingston, Ontario, Canada
  • MR Author ID: 72575
  • Email: geramita@dima.unige.it
  • A. Gimigliano
  • Affiliation: Dipartimento di Matematica and CIRAM, Università di Bologna, Italy
  • Email: gimiglia@dm.unibo.it
  • Received by editor(s): November 26, 2002
  • Received by editor(s) in revised form: October 2, 2003
  • Published electronically: October 7, 2004
  • Additional Notes: The first author was supported in part by MIUR funds
    The second author was supported in part by MIUR funds, and by the Natural Sciences and Engineering Research Council of Canada.
    The third author was supported in part by the University of Bologna, funds for selected research topics, and by MIUR funds
  • Communicated by: Michael Stillman
  • © Copyright 2004 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Proc. Amer. Math. Soc. 133 (2005), 633-642
  • MSC (2000): Primary 14M15, 15A75
  • DOI: https://doi.org/10.1090/S0002-9939-04-07632-4
  • MathSciNet review: 2113908