A new proximal point iteration that converges weakly but not in norm
HTML articles powered by AMS MathViewer
- by H. H. Bauschke, J. V. Burke, F. R. Deutsch, H. S. Hundal and J. D. Vanderwerff
- Proc. Amer. Math. Soc. 133 (2005), 1829-1835
- DOI: https://doi.org/10.1090/S0002-9939-05-07719-1
- Published electronically: January 25, 2005
- PDF | Request permission
Abstract:
In 1991, Güler constructed a proximal point iteration that converges weakly but not in norm. By building on a recent result of Hundal, we present a new, considerably simpler, example of this type.References
- H. H. Bauschke, Projection Algorithms and Monotone Operators, Ph.D. Thesis, Department of Mathematics and Statistics, Simon Fraser University, Burnaby, British Columbia, August 1996. Available at http://www.cecm.sfu.ca/preprints/1996pp.html.
- Heinz H. Bauschke and Jonathan M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev. 38 (1996), no. 3, 367–426. MR 1409591, DOI 10.1137/S0036144593251710
- H. H. Bauschke and J. M. Borwein, On the convergence of von Neumann’s alternating projection algorithm for two sets, Set-Valued Anal. 1 (1993), no. 2, 185–212. MR 1239403, DOI 10.1007/BF01027691
- Heinz H. Bauschke and Patrick L. Combettes, A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces, Math. Oper. Res. 26 (2001), no. 2, 248–264. MR 1895827, DOI 10.1287/moor.26.2.248.10558
- Heinz H. Bauschke, Eva Matoušková, and Simeon Reich, Projection and proximal point methods: convergence results and counterexamples, Nonlinear Anal. 56 (2004), no. 5, 715–738. MR 2036787, DOI 10.1016/j.na.2003.10.010
- L. M. Bregman, The method of successive projection for finding a common point of convex sets, Soviet Math. Dokl., 6 (1965), 688–692.
- H. Brézis and P.-L. Lions, Produits infinis de résolvantes, Israel J. Math. 29 (1978), no. 4, 329–345 (French, with English summary). MR 491922, DOI 10.1007/BF02761171
- Frank Deutsch, Best approximation in inner product spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 7, Springer-Verlag, New York, 2001. MR 1823556, DOI 10.1007/978-1-4684-9298-9
- Osman Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim. 29 (1991), no. 2, 403–419. MR 1092735, DOI 10.1137/0329022
- Hein S. Hundal, An alternating projection that does not converge in norm, Nonlinear Anal. 57 (2004), no. 1, 35–61. MR 2055986, DOI 10.1016/j.na.2003.11.004
- B. Martinet, Régularisation d’inéquations variationnelles par approximations successives, Rev. Française Informat. Recherche Opérationnelle 4 (1970), no. Sér. R-3, 154–158 (French). MR 0298899
- George J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341–346. MR 169064
- Jean-Jacques Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France 93 (1965), 273–299 (French). MR 201952
- Robert R. Phelps, Convex functions, monotone operators and differentiability, 2nd ed., Lecture Notes in Mathematics, vol. 1364, Springer-Verlag, Berlin, 1993. MR 1238715
- R. Tyrrell Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976), no. 5, 877–898. MR 410483, DOI 10.1137/0314056
- Stephen Simons, Minimax and monotonicity, Lecture Notes in Mathematics, vol. 1693, Springer-Verlag, Berlin, 1998. MR 1723737, DOI 10.1007/BFb0093633
- M. V. Solodov and B. F. Svaiter, Forcing strong convergence of proximal point iterations in a Hilbert space, Math. Program. 87 (2000), no. 1, Ser. A, 189–202. MR 1734665, DOI 10.1007/s101079900113
Bibliographic Information
- H. H. Bauschke
- Affiliation: Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada N1G 2W1
- MR Author ID: 334652
- Email: hbauschk@uoguelph.ca
- J. V. Burke
- Affiliation: Department of Mathematics, University of Washington, Box 354350, Seattle, Washington 98195-4350
- Email: burke@math.washington.edu
- F. R. Deutsch
- Affiliation: Department of Mathematics, The Pennsylvania State University, University Park, Pennsylvania 16802
- Email: deutsch@math.psu.edu
- H. S. Hundal
- Affiliation: Momentum Investment Services, 146 Cedar Ridge Drive, Port Matilda, Pennsylvania 16870
- Email: hundal@math.psu.edu
- J. D. Vanderwerff
- Affiliation: Department of Mathematics, La Sierra University, Riverside, California 92515
- Email: jvanderw@LaSierra.edu
- Received by editor(s): September 13, 2002
- Published electronically: January 25, 2005
- Additional Notes: The first author was supported in part by the Natural Sciences and Engineering Research Council of Canada. The second author was supported in part by the National Science Foundation Grant DMS-0203175. The third author was supported in part by the National Science Foundation Grant DMS-0204569.
- Communicated by: Jonathan M. Borwein
- © Copyright 2005 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 133 (2005), 1829-1835
- MSC (2000): Primary 65K10, 90C25; Secondary 47H05, 47H09, 65K05
- DOI: https://doi.org/10.1090/S0002-9939-05-07719-1
- MathSciNet review: 2120284