## The Lax conjecture is true

HTML articles powered by AMS MathViewer

- by A. S. Lewis, P. A. Parrilo and M. V. Ramana PDF
- Proc. Amer. Math. Soc.
**133**(2005), 2495-2499 Request permission

## Abstract:

In 1958 Lax conjectured that hyperbolic polynomials in three variables are determinants of linear combinations of three symmetric matrices. This conjecture is equivalent to a recent observation of Helton and Vinnikov.## References

- Heinz H. Bauschke, Osman Güler, Adrian S. Lewis, and Hristo S. Sendov,
*Hyperbolic polynomials and convex analysis*, Canad. J. Math.**53**(2001), no. 3, 470–488. MR**1827817**, DOI 10.4153/CJM-2001-020-6 - Chek Beng Chua,
*Relating homogeneous cones and positive definite cones via $T$-algebras*, SIAM J. Optim.**14**(2003), no. 2, 500–506. MR**2048159**, DOI 10.1137/S1052623402406765 - Leonid Faybusovich,
*On Nesterov’s approach to semi-infinite programming*, Acta Appl. Math.**74**(2002), no. 2, 195–215. MR**1935854**, DOI 10.1023/A:1020643711475 - Lars Gårding,
*Linear hyperbolic partial differential equations with constant coefficients*, Acta Math.**85**(1951), 1–62. MR**41336**, DOI 10.1007/BF02395740 - Lars Gȧrding,
*An inequality for hyperbolic polynomials*, J. Math. Mech.**8**(1959), 957–965. MR**0113978**, DOI 10.1512/iumj.1959.8.58061 - Osman Güler,
*Hyperbolic polynomials and interior point methods for convex programming*, Math. Oper. Res.**22**(1997), no. 2, 350–377. MR**1450796**, DOI 10.1287/moor.22.2.350 - J.W. Helton and V. Vinnikov. Linear matrix inequality representation of sets. Technical report, Mathematics Department, UCSD, 2002.
- P. D. Lax,
*Differential equations, difference equations and matrix theory*, Comm. Pure Appl. Math.**11**(1958), 175–194. MR**98110**, DOI 10.1002/cpa.3160110203 - Yurii Nesterov and Arkadii Nemirovskii,
*Interior-point polynomial algorithms in convex programming*, SIAM Studies in Applied Mathematics, vol. 13, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994. MR**1258086**, DOI 10.1137/1.9781611970791 - Victor Vinnikov,
*Selfadjoint determinantal representations of real plane curves*, Math. Ann.**296**(1993), no. 3, 453–479. MR**1225986**, DOI 10.1007/BF01445115

## Additional Information

**A. S. Lewis**- Affiliation: Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
- Address at time of publication: School of Operations Research and Industrial Engineering, Cornell University, Ithaca, New York 14853
- Email: aslewis@sfu.ca, aslewis@orie.cornell.edu
**P. A. Parrilo**- Affiliation: Automatic Control Laboratory, Swiss Federal Institute of Technology, CH-8092 Zürich, Switzerland
- Email: parrilo@control.ee.ethz.ch
**M. V. Ramana**- Affiliation: Corporate Research and Development, United Airlines Inc., Elk Grove Village, Illinois 60007
- Email: motakuri_ramana@yahoo.com
- Received by editor(s): April 2, 2003
- Published electronically: March 31, 2005
- Additional Notes: The research of the first author was supported by NSERC
- Communicated by: Jonathan M. Borwein
- © Copyright 2005 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**133**(2005), 2495-2499 - MSC (2000): Primary 15A45, 90C25, 52A41
- DOI: https://doi.org/10.1090/S0002-9939-05-07752-X
- MathSciNet review: 2146191