## Low regularity solutions for a class of nonlinear wave equations

HTML articles powered by AMS MathViewer

- by Nikolaos Bournaveas PDF
- Proc. Amer. Math. Soc.
**133**(2005), 2721-2727 Request permission

## Abstract:

We construct local low regularity solutions for a class of nonlinear wave equations with power-type nonlinearities.## References

- Nikolaos Bournaveas,
*Local existence for the Maxwell-Dirac equations in three space dimensions*, Comm. Partial Differential Equations**21**(1996), no. 5-6, 693–720. MR**1391520**, DOI 10.1080/03605309608821204 - Michael Christ,
*Lectures on singular integral operators*, CBMS Regional Conference Series in Mathematics, vol. 77, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1990. MR**1104656** - F. M. Christ and M. I. Weinstein,
*Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation*, J. Funct. Anal.**100**(1991), no. 1, 87–109. MR**1124294**, DOI 10.1016/0022-1236(91)90103-C - M. Escobedo and L. Vega,
*A semilinear Dirac equation in $H^s(\textbf {R}^3)$ for $s>1$*, SIAM J. Math. Anal.**28**(1997), no. 2, 338–362. MR**1434039**, DOI 10.1137/S0036141095283017 - Tosio Kato,
*On nonlinear Schrödinger equations. II. $H^s$-solutions and unconditional well-posedness*, J. Anal. Math.**67**(1995), 281–306. MR**1383498**, DOI 10.1007/BF02787794 - Sergiu Klainerman,
*Mathematical theory of classical fields and general relativity*, Mathematical physics, X (Leipzig, 1991) Springer, Berlin, 1992, pp. 213–236. MR**1386408** - S. Klainerman and M. Machedon,
*Space-time estimates for null forms and the local existence theorem*, Comm. Pure Appl. Math.**46**(1993), no. 9, 1221–1268. MR**1231427**, DOI 10.1002/cpa.3160460902 - Hans Lindblad and Christopher D. Sogge,
*On existence and scattering with minimal regularity for semilinear wave equations*, J. Funct. Anal.**130**(1995), no. 2, 357–426. MR**1335386**, DOI 10.1006/jfan.1995.1075 - S. J. Montgomery-Smith,
*Time decay for the bounded mean oscillation of solutions of the Schrödinger and wave equations*, Duke Math. J.**91**(1998), no. 2, 393–408. MR**1600602**, DOI 10.1215/S0012-7094-98-09117-7 - Fabrice Planchon,
*On uniqueness for semilinear wave equations*, Math. Z.**244**(2003), no. 3, 587–599. MR**1992026**, DOI 10.1007/s00209-003-0509-z - Gustavo Ponce and Thomas C. Sideris,
*Local regularity of nonlinear wave equations in three space dimensions*, Comm. Partial Differential Equations**18**(1993), no. 1-2, 169–177. MR**1211729**, DOI 10.1080/03605309308820925 - Christopher D. Sogge,
*Lectures on nonlinear wave equations*, Monographs in Analysis, II, International Press, Boston, MA, 1995. MR**1715192**

## Additional Information

**Nikolaos Bournaveas**- Affiliation: School of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
- Email: N.Bournaveas@ed.ac.uk
- Received by editor(s): September 1, 2003
- Received by editor(s) in revised form: May 3, 2004
- Published electronically: March 22, 2005
- Communicated by: Christopher D. Sogge
- © Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**133**(2005), 2721-2727 - MSC (2000): Primary 35L70
- DOI: https://doi.org/10.1090/S0002-9939-05-07813-5
- MathSciNet review: 2146219