Dirichlet boundary conditions for elliptic operators with unbounded drift
HTML articles powered by AMS MathViewer
- by A. Lunardi, G. Metafune and D. Pallara
- Proc. Amer. Math. Soc. 133 (2005), 2625-2635
- DOI: https://doi.org/10.1090/S0002-9939-05-08068-8
- Published electronically: April 19, 2005
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 134 (2006), 2479-2480.
Abstract:
We study the realisation $A$ of the operator $\mathcal {A} = \Delta - \langle D\Phi , D\cdot \rangle$ in $L^2(\Omega , \mu )$ with Dirichlet boundary condition, where $\Omega$ is a possibly unbounded open set in $\mathbb {R}^N$, $\Phi$ is a semi-convex function and the measure $d\mu (x) = \exp (-\Phi (x)) dx$ lets $\mathcal {A}$ be formally self-adjoint. The main result is that $A:D(A)= \{u\in H^2(\Omega , \mu ): \langle D\Phi , Du \rangle \in L^2(\Omega , \mu ), u=0$ at $\partial \Omega \}$ is a dissipative self-adjoint operator in $L^2(\Omega , \mu )$.References
- M. Bertoldi and S. Fornaro, Gradient estimates in parabolic problems with unbounded coefficients, Studia Math. 165 (2004), no. 3, 221–254. MR 2109509, DOI 10.4064/sm165-3-3
- Sandra Cerrai, Second order PDE’s in finite and infinite dimension, Lecture Notes in Mathematics, vol. 1762, Springer-Verlag, Berlin, 2001. A probabilistic approach. MR 1840644, DOI 10.1007/b80743
- Giuseppe Da Prato and Alessandra Lunardi, Elliptic operators with unbounded drift coefficients and Neumann boundary condition, J. Differential Equations 198 (2004), no. 1, 35–52. MR 2037749, DOI 10.1016/j.jde.2003.10.025
- E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. MR 990239, DOI 10.1017/CBO9780511566158
- Leonard Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), no. 4, 1061–1083. MR 420249, DOI 10.2307/2373688
- Leonard Gross, Logarithmic Sobolev inequalities and contractivity properties of semigroups, Dirichlet forms (Varenna, 1992) Lecture Notes in Math., vol. 1563, Springer, Berlin, 1993, pp. 54–88. MR 1292277, DOI 10.1007/BFb0074091
- G. Metafune, D. Pallara, V. Vespri: $L^p$-estimates for a class of elliptic operators with unbounded coefficients in $\mathbb {R}^N$, Houston J. Math. 31 (2005), 605–620.
- G. Metafune, A. Rhandi, J. Prüss, R. Schnaubelt: $L^p$ regularity for elliptic operators with unbounded coefficients, preprint.
- Patrick J. Rabier, Elliptic problems on $\Bbb R^N$ with unbounded coefficients in classical Sobolev spaces, Math. Z. 249 (2005), no. 1, 1–30. MR 2106968, DOI 10.1007/s00209-004-0686-4
- O. S. Rothaus, Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities, J. Functional Analysis 42 (1981), no. 1, 102–109. MR 620581, DOI 10.1016/0022-1236(81)90049-5
- Feng-Yu Wang, Logarithmic Sobolev inequalities: conditions and counterexamples, J. Operator Theory 46 (2001), no. 1, 183–197. MR 1862186
Bibliographic Information
- A. Lunardi
- Affiliation: Dipartimento di Matematica, Università di Parma, Parco Area delle Scienze 53, 43100 Parma, Italy
- MR Author ID: 116935
- Email: lunardi@unipr.it
- G. Metafune
- Affiliation: Dipartimento di Matematica “Ennio De Giorgi”, Università di Lecce, C.P.193, 73100, Lecce, Italy
- MR Author ID: 123880
- Email: giorgio.metafune@unile.it
- D. Pallara
- Affiliation: Dipartimento di Matematica “Ennio De Giorgi”, Università di Lecce, C.P.193, 73100, Lecce, Italy
- Email: diego.pallara@unile.it
- Received by editor(s): April 19, 2004
- Published electronically: April 19, 2005
- Communicated by: David S. Tartakoff
- © Copyright 2005 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 133 (2005), 2625-2635
- MSC (2000): Primary 35J70; Secondary 47D07
- DOI: https://doi.org/10.1090/S0002-9939-05-08068-8
- MathSciNet review: 2146208