Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A round ball uniquely minimizes gravitational potential energy
HTML articles powered by AMS MathViewer

by Frank Morgan
Proc. Amer. Math. Soc. 133 (2005), 2733-2735
DOI: https://doi.org/10.1090/S0002-9939-05-08070-6
Published electronically: April 12, 2005

Abstract:

We give a proof following Carleman that among measurable bodies in $\mathbf {R}^3$ of mass $m_0$ and density at most 1, a round ball of unit density uniquely minimizes gravitational potential energy.
References
  • Wilhelm Blaschke, Eine isoperimetrische Eigenschaft des Kreises, Math. Z. 1 (1918), 52–57.
  • T. Carleman, Über eine isoperimetrische Aufgabe und ihre physikalischen Anwendungen, Math. Z. 3 (1919), 1–7.
  • S. Chandrasekhar, Ellipsoidal figures of equilibrium—an historical account, Comm. Pure Appl. Math. 20 (1967), 251–265. MR 213075, DOI 10.1002/cpa.3160200203
  • Frank Morgan, The perfect shape for a rotating rigid body, Math. Magazine 75 (February, 2002), 30–32.
  • H. Poincaré, Figures d’Equilibre d’une Masse, Paris, Gauthier-Villars, 1902.
Similar Articles
Bibliographic Information
  • Frank Morgan
  • Affiliation: Department of Mathematics and Statistics, Williams College, Williamstown, Massachusetts 01267
  • Email: Frank.Morgan@williams.edu
  • Received by editor(s): January 14, 2002
  • Published electronically: April 12, 2005
  • Communicated by: Wolfgang Ziller
  • © Copyright 2005 by Frank Morgan
  • Journal: Proc. Amer. Math. Soc. 133 (2005), 2733-2735
  • MSC (2000): Primary 76U05, 49Q10, 85A30, 53C80
  • DOI: https://doi.org/10.1090/S0002-9939-05-08070-6
  • MathSciNet review: 2146221