Revisiting two theorems of Curto and Fialkow on moment matrices
HTML articles powered by AMS MathViewer
- by Monique Laurent
- Proc. Amer. Math. Soc. 133 (2005), 2965-2976
- DOI: https://doi.org/10.1090/S0002-9939-05-08133-5
- Published electronically: May 9, 2005
- PDF | Request permission
Abstract:
We revisit two results of Curto and Fialkow on moment matrices. The first result asserts that every sequence $y\in \mathbb {R}^{\mathbb {Z}^n_+}$ whose moment matrix $M(y)$ is positive semidefinite and has finite rank $r$ is the sequence of moments of an $r$-atomic nonnegative measure $\mu$ on $\mathbb {R}^n$. We give an alternative proof for this result, using algebraic tools (the Nullstellensatz) in place of the functional analytic tools used in the original proof of Curto and Fialkow. An easy observation is the existence of interpolation polynomials at the atoms of the measure $\mu$ having degree at most $t$ if the principal submatrix $M_t(y)$ of $M(y)$ (indexed by all monomials of degree $\le t$) has full rank $r$. This observation enables us to shortcut the proof of the following result. Consider a basic closed semialgebraic set $F=\{x\in \mathbb {R}^n\mid h_1(x)\ge 0, \ldots ,h_m(x)\ge 0\}$, where $h_j\in \mathbb {R}[x_1,\ldots ,x_n]$ and $d:=\operatorname {max}_{j=1}^m \lceil \operatorname {deg}(h_j)/2\rceil$. If $M_t(y)$ is positive semidefinite and has a flat extension $M_{t+d}(y)$ such that all localizing matrices $M_{t}(h_j\ast y)$ are positive semidefinite, then $y$ has an atomic representing measure supported by $F$. We also review an application of this result to the problem of minimizing a polynomial over the set $F$.References
- J. Bochnak, M. Coste, and M.-F. Roy, Géométrie algébrique réelle, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 12, Springer-Verlag, Berlin, 1987 (French). MR 949442
- Saugata Basu, Richard Pollack, and Marie-Françoise Roy, Algorithms in real algebraic geometry, Algorithms and Computation in Mathematics, vol. 10, Springer-Verlag, Berlin, 2003. MR 1998147, DOI 10.1007/978-3-662-05355-3
- C. Berg, J. P. R. Christensen, and C. U. Jensen, A remark on the multidimensional moment problem, Math. Ann. 243 (1979), no. 2, 163–169. MR 543726, DOI 10.1007/BF01420423
- Christian Berg, Jens Peter Reus Christensen, and Paul Ressel, Positive definite functions on abelian semigroups, Math. Ann. 223 (1976), no. 3, 253–274. MR 420150, DOI 10.1007/BF01360957
- Christian Berg and P. H. Maserick, Exponentially bounded positive definite functions, Illinois J. Math. 28 (1984), no. 1, 162–179. MR 730718
- David Cox, John Little, and Donal O’Shea, Ideals, varieties, and algorithms, 2nd ed., Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1997. An introduction to computational algebraic geometry and commutative algebra. MR 1417938
- David Cox, John Little, and Donal O’Shea, Using algebraic geometry, Graduate Texts in Mathematics, vol. 185, Springer-Verlag, New York, 1998. MR 1639811, DOI 10.1007/978-1-4757-6911-1
- Raúl E. Curto and Lawrence A. Fialkow, Solution of the truncated complex moment problem for flat data, Mem. Amer. Math. Soc. 119 (1996), no. 568, x+52. MR 1303090, DOI 10.1090/memo/0568
- Raúl E. Curto and Lawrence A. Fialkow, Flat extensions of positive moment matrices: recursively generated relations, Mem. Amer. Math. Soc. 136 (1998), no. 648, x+56. MR 1445490, DOI 10.1090/memo/0648
- Raúl E. Curto and Lawrence A. Fialkow, The truncated complex $K$-moment problem, Trans. Amer. Math. Soc. 352 (2000), no. 6, 2825–2855. MR 1661305, DOI 10.1090/S0002-9947-00-02472-7
- Raúl E. Curto and Lawrence A. Fialkow, Solution of the singular quartic moment problem, J. Operator Theory 48 (2002), no. 2, 315–354. MR 1938799
- M. Freedman, L. Lovász, and A. Schrijver. Reflection positivity, rank connectivity and homomorphism of graphs. Preprint, 2004.
- Bent Fuglede, The multidimensional moment problem, Exposition. Math. 1 (1983), no. 1, 47–65. MR 693807
- E.K. Haviland. On the momentum problem for distributions in more than one dimension. Amer. J. Math. 57 (1935), 562–568.
- Didier Henrion and Jean-Bernard Lasserre, GloptiPoly: global optimization over polynomials with Matlab and SeDuMi, ACM Trans. Math. Software 29 (2003), no. 2, 165–194. MR 2000881, DOI 10.1145/779359.779363
- D. Henrion and J.-B. Lasserre. Detecting global optimality and extracting solutions in GloptiPoly. In Positive Polynomials in Control, D. Henrion and A. Garulli, eds., Lecture Notes on Control and Information Sciences, Vol. 312, Springer Verlag, 2005, 293–311.
- H. J. Landau, Classical background of the moment problem, Moments in mathematics (San Antonio, Tex., 1987) Proc. Sympos. Appl. Math., vol. 37, Amer. Math. Soc., Providence, RI, 1987, pp. 1–15. MR 921082, DOI 10.1090/psapm/037/921082
- Jean B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM J. Optim. 11 (2000/01), no. 3, 796–817. MR 1814045, DOI 10.1137/S1052623400366802
- Jean B. Lasserre, An explicit exact SDP relaxation for nonlinear 0-1 programs, Integer programming and combinatorial optimization (Utrecht, 2001) Lecture Notes in Comput. Sci., vol. 2081, Springer, Berlin, 2001, pp. 293–303. MR 2041934, DOI 10.1007/3-540-45535-3_{2}3
- Jean B. Lasserre, Polynomials nonnegative on a grid and discrete optimization, Trans. Amer. Math. Soc. 354 (2002), no. 2, 631–649. MR 1862561, DOI 10.1090/S0002-9947-01-02898-7
- Monique Laurent, A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations for 0-1 programming, Math. Oper. Res. 28 (2003), no. 3, 470–496. MR 1997246, DOI 10.1287/moor.28.3.470.16391
- M. Laurent. Semidefinite representations for finite varieties. Preprint, 2002. To appear in Mathematical Programming.
- R. J. Lindahl and P. H. Maserick, Positive-definite functions on involution semigroups, Duke Math. J. 38 (1971), 771–782. MR 291826, DOI 10.1215/S0012-7094-71-03893-2
- P.A. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Ph.D. thesis, California Institute of Technology, May 2000.
- Pablo A. Parrilo, Semidefinite programming relaxations for semialgebraic problems, Math. Program. 96 (2003), no. 2, Ser. B, 293–320. Algebraic and geometric methods in discrete optimization. MR 1993050, DOI 10.1007/s10107-003-0387-5
- S. Prajna, A. Papachristodoulou, and P.A. Parrilo. SOSTOOLS (Sums of squares optimization toolbox for MATLAB) User’s guide. Available at http://control.ee.ethz.ch/~parrilo/sostools/index.html1
- Mihai Putinar, Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J. 42 (1993), no. 3, 969–984. MR 1254128, DOI 10.1512/iumj.1993.42.42045
- Bruce Reznick, Some concrete aspects of Hilbert’s 17th Problem, Real algebraic geometry and ordered structures (Baton Rouge, LA, 1996) Contemp. Math., vol. 253, Amer. Math. Soc., Providence, RI, 2000, pp. 251–272. MR 1747589, DOI 10.1090/conm/253/03936
- Konrad Schmüdgen, The $K$-moment problem for compact semi-algebraic sets, Math. Ann. 289 (1991), no. 2, 203–206. MR 1092173, DOI 10.1007/BF01446568
- Markus Schweighofer, An algorithmic approach to Schmüdgen’s Positivstellensatz, J. Pure Appl. Algebra 166 (2002), no. 3, 307–319. MR 1870623, DOI 10.1016/S0022-4049(01)00041-X
- M. Schweighofer. Optimization of polynomials on compact semialgebraic sets. Preprint, 2003. To appear in SIAM Journal on Optimization.
Bibliographic Information
- Monique Laurent
- Affiliation: Centrum voor Wiskunde en Informatica, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
- Email: M.Laurent@cwi.nl
- Received by editor(s): January 16, 2004
- Published electronically: May 9, 2005
- Additional Notes: This work was supported by the Netherlands Organisation for Scientific Research grant NWO 639.032.203
- Communicated by: Lance W. Small
- © Copyright 2005 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 133 (2005), 2965-2976
- MSC (2000): Primary 44A30, 13J30, 14P10, 90C22
- DOI: https://doi.org/10.1090/S0002-9939-05-08133-5
- MathSciNet review: 2159775