Symmetrization inequalities and Sobolev embeddings
Authors:
Joaquim Martín and Mario Milman
Journal:
Proc. Amer. Math. Soc. 134 (2006), 2335-2347
MSC (2000):
Primary 46E30, 26D10
DOI:
https://doi.org/10.1090/S0002-9939-06-08277-3
Published electronically:
February 6, 2006
MathSciNet review:
2213707
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We prove new extended forms of the Pólya-Szegö symmetrization principle. As a consequence new sharp embedding theorems for generalized Besov spaces are proved, including a sharpening of the limiting cases of the classical Sobolev embedding theorem. In particular, a surprising self-improving property of certain Sobolev embeddings is uncovered.
- Frederick J. Almgren Jr. and Elliott H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc. 2 (1989), no. 4, 683–773. MR 1002633, DOI https://doi.org/10.1090/S0894-0347-1989-1002633-4
- Jesús Bastero, Mario Milman, and Francisco J. Ruiz Blasco, A note on $L(\infty ,q)$ spaces and Sobolev embeddings, Indiana Univ. Math. J. 52 (2003), no. 5, 1215–1230. MR 2010324, DOI https://doi.org/10.1512/iumj.2003.52.2364
- Colin Bennett, Ronald A. DeVore, and Robert Sharpley, Weak-$L^{\infty }$ and BMO, Ann. of Math. (2) 113 (1981), no. 3, 601–611. MR 621018, DOI https://doi.org/10.2307/2006999
- Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR 928802
- Haïm Brézis and Stephen Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations 5 (1980), no. 7, 773–789. MR 579997, DOI https://doi.org/10.1080/03605308008820154
- J.-M. Coron, The continuity of the rearrangement in $W^{1,p}({\bf R})$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), no. 1, 57–85. MR 752580
- Michael Cwikel and Evgeniy Pustylnik, Sobolev type embeddings in the limiting case, J. Fourier Anal. Appl. 4 (1998), no. 4-5, 433–446. MR 1658620, DOI https://doi.org/10.1007/BF02498218
- John J. F. Fournier, Mixed norms and rearrangements: Sobolev’s inequality and Littlewood’s inequality, Ann. Mat. Pura Appl. (4) 148 (1987), 51–76. MR 932758, DOI https://doi.org/10.1007/BF01774283
- Adriano M. Garsia, Combinatorial inequalities and smoothness of functions, Bull. Amer. Math. Soc. 82 (1976), no. 2, 157–170. MR 582776, DOI https://doi.org/10.1090/S0002-9904-1976-13975-4
- A. M. Garsia and E. Rodemich, Monotonicity of certain functionals under rearrangement, Ann. Inst. Fourier (Grenoble) 24 (1974), no. 2, vi, 67–116 (English, with French summary). MR 414802
- Kurt Hansson, Imbedding theorems of Sobolev type in potential theory, Math. Scand. 45 (1979), no. 1, 77–102. MR 567435, DOI https://doi.org/10.7146/math.scand.a-11827
- Piotr Hajłasz, Sobolev inequalities, truncation method, and John domains, Papers on analysis, Rep. Univ. Jyväskylä Dep. Math. Stat., vol. 83, Univ. Jyväskylä, Jyväskylä, 2001, pp. 109–126. MR 1886617
- C. S. Herz, Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms, J. Math. Mech. 18 (1968/69), 283–323. MR 0438109, DOI https://doi.org/10.1512/iumj.1969.18.18024
- H. Johnen and K. Scherer, On the equivalence of the $K$-functional and moduli of continuity and some applications, Constructive theory of functions of several variables (Proc. Conf., Math. Res. Inst., Oberwolfach, 1976) Springer, Berlin, 1977, pp. 119–140. Lecture Notes in Math., Vol. 571. MR 0487423
- V. S. Klimov, Imbedding theorems for symmetric spaces, Mat. Sb. (N.S.) 79(121) (1969), 171–178 (Russian). MR 0511930
- V. I. Kolyada, Estimates for rearrangements and embedding theorems, Mat. Sb. (N.S.) 136(178) (1988), no. 1, 3–23, 160 (Russian); English transl., Math. USSR-Sb. 64 (1989), no. 1, 1–21. MR 945897, DOI https://doi.org/10.1070/SM1989v064n01ABEH003291
- V. I. Kolyada, Rearrangements of functions, and embedding theorems, Uspekhi Mat. Nauk 44 (1989), no. 5(269), 61–95 (Russian); English transl., Russian Math. Surveys 44 (1989), no. 5, 73–117. MR 1040269, DOI https://doi.org/10.1070/RM1989v044n05ABEH002287
- Elliott H. Lieb and Michael Loss, Analysis, 2nd ed., Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001. MR 1817225
- J. Martín and M. Milman, Higher order symmetrization inequalities and applications (preprint).
- Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova. MR 817985
- V. G. Maz′ya, On certain integral inequalities for functions of many variables. Problems of Mathematical Analysis, Leningrad Univ. 3 (1972), 33-68 (Russian). English trans. J. Soviet Math. 1 (1973), 205-234.
- Mario Milman, On interpolation of entropy and block spaces, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 531–540. MR 1315462, DOI https://doi.org/10.1093/qmath/45.4.531
- Mario Milman and Evgeniy Pustylnik, On sharp higher order Sobolev embeddings, Commun. Contemp. Math. 6 (2004), no. 3, 495–511. MR 2068850, DOI https://doi.org/10.1142/S0219199704001380
- Jacqueline Mossino, Inégalités isopérimétriques et applications en physique, Travaux en Cours. [Works in Progress], Hermann, Paris, 1984 (French). MR 733257
- Jaak Peetre, Espaces d’interpolation et théorème de Soboleff, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 1, 279–317 (French). MR 221282
- Evgeniy Pustylnik, Sobolev type inequalities in ultrasymmetric spaces with applications to Orlicz-Sobolev embeddings, J. Funct. Spaces Appl. 3 (2005), no. 2, 183–208. MR 2135650, DOI https://doi.org/10.1155/2005/254184
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Jean van Schaftingen, Universal approximation of symmetrizations by polarizations, Proc. Amer. Math. Soc. 134 (2006), no. 1, 177–186. MR 2170557, DOI https://doi.org/10.1090/S0002-9939-05-08325-5
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46E30, 26D10
Retrieve articles in all journals with MSC (2000): 46E30, 26D10
Additional Information
Joaquim Martín
Affiliation:
Department de Matemàtiques, Universitat Autónoma de Barcelona, 08193 Bellaterra (Barcelona) Spain
Email:
jmartin@mat.uab.es
Mario Milman
Affiliation:
Department of Mathematics, Florida Atlantic University, Boca Raton, Florida 33431
Email:
interpol@bellsouth.net
Keywords:
Symmetrization,
Besov spaces,
Sobolev spaces,
rearrangement invariant spaces.
Received by editor(s):
August 25, 2004
Received by editor(s) in revised form:
March 8, 2005
Published electronically:
February 6, 2006
Additional Notes:
The first author was supported by “programa Ramón y Cajal (MCYT)”, and in part by MTM2004-02299 and CURE 2001SGR 00069
Communicated by:
Andreas Seeger
Article copyright:
© Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.