A Beurling-Carleson set which is a uniqueness set for a given weighted space of analytic functions

Author:
Cyril Agrafeuil

Journal:
Proc. Amer. Math. Soc. **134** (2006), 3287-3294

MSC (2000):
Primary 30C15, 30H05

DOI:
https://doi.org/10.1090/S0002-9939-06-08399-7

Published electronically:
May 8, 2006

MathSciNet review:
2231913

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $p = \big ( p(n) \big )_{n \geq 0}$ be a sequence of positive real numbers. We define $B_{p}$ as the space of functions $f$ which are analytic in the unit disc $\mathbb {D}$, continuous on $\overline {\mathbb {D}}$ and such that \[ \big \| f \big \|_{p} := \sum _{n=0}^{+\infty } | \hat {f}(n) | p(n) < +\infty , \] where $\hat {f}(n)$ is the $n^{\textrm {th}}$ Fourier coefficient of the restriction of $f$ to the unit circle $\mathbb {T}$. Let $E$ be a closed subset of $\mathbb {T}$. We say that $E$ is a Beurling-Carleson set if \[ \int _{0}^{2\pi } \log ^{+} \frac {1}{d(e^{it},E)} \mathrm {d} t < +\infty , \] where $d(e^{it},E)$ denotes the distance between $e^{it}$ and $E$. In 1980, A. Atzmon asked whether there exists a sequence $p$ of positive real numbers such that $\displaystyle \lim _{n \rightarrow +\infty } \frac {p(n)}{n^{k}} = +\infty$ for all $k \geq 0$ and that has the following property: for every Beurling-Carleson set $E$, there exists a non-zero function in $B_{p}$ that vanishes on $E$. In this note, we give a negative answer to this question.

- Aharon Atzmon,
*Boundary values of absolutely convergent Taylor series*, Ann. of Math. (2)**111**(1980), no. 2, 231–237. MR**569071**, DOI https://doi.org/10.2307/1971199 - Lennart Carleson,
*Sets of uniqueness for functions regular in the unit circle*, Acta Math.**87**(1952), 325–345. MR**50011**, DOI https://doi.org/10.1007/BF02392289 - Jean-Pierre Kahane and Raphaël Salem,
*Ensembles parfaits et séries trigonométriques*, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1301, Hermann, Paris, 1963 (French). MR**0160065** - B. I. Korenblyum,
*Closed ideals in the ring $\mathcal {A}^{n}$*, J. Func. Anal. Appl.**6**(1972), 203-214. - V. S. Korolevič,
*A certain theorem of Beurling and Carleson*, Ukrain. Mat. Ž.**22**(1970), 823–828 (Russian). MR**0289785** - B. A. Taylor and D. L. Williams,
*Ideals in rings of analytic functions with smooth boundary values*, Canadian J. Math.**22**(1970), 1266–1283. MR**273024**, DOI https://doi.org/10.4153/CJM-1970-143-x - B. A. Taylor and D. L. Williams,
*Boundary zero sets of $A^{\infty }$ functions satisfying growth conditions*, Proc. Amer. Math. Soc.**35**(1972), 155–160. MR**310253**, DOI https://doi.org/10.1090/S0002-9939-1972-0310253-9

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
30C15,
30H05

Retrieve articles in all journals with MSC (2000): 30C15, 30H05

Additional Information

**Cyril Agrafeuil**

Affiliation:
LaBAG, CNRS-UMR 5467, Université Bordeaux I, 351 cours de la Libération, 33451 Talence, France

Address at time of publication:
LATP, Faculté des Sciences de Saint-Jérôme, Bâtiment Henri Poincaré, Cour A, 13397 Marseille cedex 20, France

Email:
Cyril.Agrafeuil@math.u-bordeaux.fr

Keywords:
Boundary zero of analytic functions,
sets of uniqueness,
spaces of analytic functions,
Beurling-Carleson sets

Received by editor(s):
September 23, 2004

Received by editor(s) in revised form:
May 26, 2005

Published electronically:
May 8, 2006

Communicated by:
David R. Larson

Article copyright:
© Copyright 2006
American Mathematical Society