Topology of spaces of equivariant symplectic embeddings
HTML articles powered by AMS MathViewer
- by Alvaro Pelayo
- Proc. Amer. Math. Soc. 135 (2007), 277-288
- DOI: https://doi.org/10.1090/S0002-9939-06-08310-9
- Published electronically: July 28, 2006
- PDF | Request permission
Abstract:
We compute the homotopy type of the space of $\mathbb {T}^n$-equivariant symplectic embeddings from the standard $2n$-dimensional ball of some fixed radius into a $2n$-dimensional symplectic–toric manifold $(M, \sigma )$, and use this computation to define a $\mathbb {Z}_{\ge 0}$-valued step function on $\mathbb {R}_{\ge 0}$ which is an invariant of the symplectic–toric type of $(M, \sigma )$. We conclude with a discussion of the partially equivariant case of this result.References
- M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), no. 1, 1–15. MR 642416, DOI 10.1112/blms/14.1.1
- Sílvia Anjos, Homotopy type of symplectomorphism groups of $S^2\times S^2$, Geom. Topol. 6 (2002), 195–218. MR 1914568, DOI 10.2140/gt.2002.6.195
- Paul Biran, Connectedness of spaces of symplectic embeddings, Internat. Math. Res. Notices 10 (1996), 487–491. MR 1399413, DOI 10.1155/S1073792896000323
- Paul Biran, From symplectic packing to algebraic geometry and back, European Congress of Mathematics, Vol. II (Barcelona, 2000) Progr. Math., vol. 202, Birkhäuser, Basel, 2001, pp. 507–524. MR 1909952
- P. Biran, Geometry of symplectic intersections, Proc. ICM Beijing III (2004) 1-3.
- Ana Cannas da Silva, Lectures on symplectic geometry, Lecture Notes in Mathematics, vol. 1764, Springer-Verlag, Berlin, 2001. MR 1853077, DOI 10.1007/978-3-540-45330-7
- Thomas Delzant, Hamiltoniens périodiques et images convexes de l’application moment, Bull. Soc. Math. France 116 (1988), no. 3, 315–339 (French, with English summary). MR 984900
- V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Invent. Math. 67 (1982), no. 3, 491–513. MR 664117, DOI 10.1007/BF01398933
- Victor Guillemin and Shlomo Sternberg, Symplectic techniques in physics, Cambridge University Press, Cambridge, 1984. MR 770935
- Victor Guillemin, Moment maps and combinatorial invariants of Hamiltonian $T^n$-spaces, Progress in Mathematics, vol. 122, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1301331, DOI 10.1007/978-1-4612-0269-1
- Victor Guillemin, Viktor Ginzburg, and Yael Karshon, Moment maps, cobordisms, and Hamiltonian group actions, Mathematical Surveys and Monographs, vol. 98, American Mathematical Society, Providence, RI, 2002. Appendix J by Maxim Braverman. MR 1929136, DOI 10.1090/surv/098
- M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307–347. MR 809718, DOI 10.1007/BF01388806
- M. Hirsch, Differential topology. Springer-Verlag 33 (1980).
- François Lalonde and Martin Pinsonnault, The topology of the space of symplectic balls in rational 4-manifolds, Duke Math. J. 122 (2004), no. 2, 347–397. MR 2053755, DOI 10.1215/S0012-7094-04-12223-7
- Yael Karshon and Susan Tolman, Centered complexity one Hamiltonian torus actions, Trans. Amer. Math. Soc. 353 (2001), no. 12, 4831–4861. MR 1852084, DOI 10.1090/S0002-9947-01-02799-4
- Y. Karshon and S. Tolman, The Gromov width of complex Grasmannians, Alg. and Geom. Topol. 5 paper 38, 911–922.
- Dusa McDuff, From symplectic deformation to isotopy, Topics in symplectic $4$-manifolds (Irvine, CA, 1996) First Int. Press Lect. Ser., I, Int. Press, Cambridge, MA, 1998, pp. 85–99. MR 1635697
- Dusa McDuff, The structure of rational and ruled symplectic $4$-manifolds, J. Amer. Math. Soc. 3 (1990), no. 3, 679–712. MR 1049697, DOI 10.1090/S0894-0347-1990-1049697-8
- A. Pelayo, Toric symplectic ball packing, To appear in Topol. Appl..
Bibliographic Information
- Alvaro Pelayo
- Affiliation: Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church Street, Ann Arbor, Michigan 48109-1043
- MR Author ID: 731609
- Email: apelayo@umich.edu
- Received by editor(s): August 5, 2004
- Received by editor(s) in revised form: April 22, 2005
- Published electronically: July 28, 2006
- Communicated by: Ronald A. Fintushel
- © Copyright 2006 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 135 (2007), 277-288
- MSC (2000): Primary 53D20; Secondary 53D05
- DOI: https://doi.org/10.1090/S0002-9939-06-08310-9
- MathSciNet review: 2280203