Absolutely indecomposable modules
HTML articles powered by AMS MathViewer
- by Rüdiger Göbel and Saharon Shelah
- Proc. Amer. Math. Soc. 135 (2007), 1641-1649
- DOI: https://doi.org/10.1090/S0002-9939-07-08725-4
- Published electronically: January 8, 2007
- PDF | Request permission
Abstract:
A module is called absolutely indecomposable if it is directly indecomposable in every generic extension of the universe. We want to show the existence of large abelian groups that are absolutely indecomposable. This will follow from a more general result about $R$-modules over a large class of commutative rings $R$ with endomorphism ring $R$ which remains the same when passing to a generic extension of the universe. It turns out that ‘large’ in this context has a precise meaning, namely being smaller than the first $\omega$-Erdős cardinal defined below. We will first apply a result on large rigid valuated trees with a similar property established by Shelah in 1982, and will prove the existence of related ‘$R_\omega$-modules’ ($R$-modules with countably many distinguished submodules) and finally pass to $R$-modules. The passage through $R_\omega$-modules has the great advantage that the proofs become very transparent essentially using a few ‘linear algebra’ arguments also accessible for graduate students. The result closes a gap of Eklof and Shelah (1999) and Eklof and Mekler (2002), provides a good starting point for Fuchs and Göbel, and gives a new construction of indecomposable modules in general using a counting argument.References
- Claudia Böttinger and Rüdiger Göbel, Endomorphism algebras of modules with distinguished partially ordered submodules over commutative rings, J. Pure Appl. Algebra 76 (1991), no. 2, 121–141. MR 1145861, DOI 10.1016/0022-4049(91)90055-7
- Gábor Braun and Rüdiger Göbel, Outer automorphisms of locally finite $p$-groups, J. Algebra 264 (2003), no. 1, 55–67. MR 1980685, DOI 10.1016/S0021-8693(03)00119-4
- Sheila Brenner, Endomorphism algebras of vector spaces with distinguished sets of subspaces, J. Algebra 6 (1967), 100–114. MR 209319, DOI 10.1016/0021-8693(67)90016-6
- Sheila Brenner and M. C. R. Butler, Endomorphism rings of vector spaces and torsion free abelian groups, J. London Math. Soc. 40 (1965), 183–187. MR 174593, DOI 10.1112/jlms/s1-40.1.183
- A. L. S. Corner, Endomorphism algebras of large modules with distinguished submodules, J. Algebra 11 (1969), 155–185. MR 237557, DOI 10.1016/0021-8693(69)90052-0
- A. L. S. Corner, Fully rigid systems of modules, Rend. Sem. Mat. Univ. Padova 82 (1989), 55–66 (1990). MR 1049584
- A. L. S. Corner and Rüdiger Göbel, Prescribing endomorphism algebras, a unified treatment, Proc. London Math. Soc. (3) 50 (1985), no. 3, 447–479. MR 779399, DOI 10.1112/plms/s3-50.3.447
- A. L. S. Corner and Rüdiger Göbel, Small almost free modules with prescribed topological endomorphism rings, Rend. Sem. Mat. Univ. Padova 109 (2003), 217–234. MR 1997988
- Manfred Dugas and Rüdiger Göbel, Automorphism groups of fields. II, Comm. Algebra 25 (1997), no. 12, 3777–3785. MR 1481565, DOI 10.1080/00927879708826085
- Manfred Dugas and Rüdiger Göbel, Automorphism groups of geometric lattices, Algebra Universalis 45 (2001), no. 4, 425–433. MR 1816977, DOI 10.1007/s000120050223
- Paul C. Eklof and Alan H. Mekler, Almost free modules, Revised edition, North-Holland Mathematical Library, vol. 65, North-Holland Publishing Co., Amsterdam, 2002. Set-theoretic methods. MR 1914985
- Paul C. Eklof and Saharon Shelah, Absolutely rigid systems and absolutely indecomposable groups, Abelian groups and modules (Dublin, 1998) Trends Math., Birkhäuser, Basel, 1999, pp. 257–268. MR 1735574
- Berthold Franzen and Rüdiger Göbel, The Brenner-Butler-Corner theorem and its applications to modules, Abelian group theory (Oberwolfach, 1985) Gordon and Breach, New York, 1987, pp. 209–227. MR 1011314
- E. Fried and J. Kollár, Automorphism groups of fields, Universal algebra (Esztergom, 1977) Colloq. Math. Soc. János Bolyai, vol. 29, North-Holland, Amsterdam-New York, 1982, pp. 293–303. MR 660867
- László Fuchs, Infinite abelian groups. Vol. II, Pure and Applied Mathematics. Vol. 36-II, Academic Press, New York-London, 1973. MR 0349869
- L. Fuchs and R. Göbel, Modules with absolute endomorphism rings, submitted.
- Rüdiger Göbel, Vector spaces with five distinguished subspaces, Results Math. 11 (1987), no. 3-4, 211–228. MR 897298, DOI 10.1007/BF03323270
- Rüdiger Göbel and Warren May, Four submodules suffice for realizing algebras over commutative rings, J. Pure Appl. Algebra 65 (1990), no. 1, 29–43. MR 1065061, DOI 10.1016/0022-4049(90)90098-3
- Rüdiger Göbel and Warren May, Independence in completions and endomorphism algebras, Forum Math. 1 (1989), no. 3, 215–226. MR 1005423, DOI 10.1515/form.1989.1.215
- Rüdiger Göbel and Saharon Shelah, Indecomposable almost free modules—the local case, Canad. J. Math. 50 (1998), no. 4, 719–738. MR 1638607, DOI 10.4153/CJM-1998-039-7
- R. Göbel and J. Trlifaj, Endomorphism Algebras and Approximations of Modules, Walter de Gruyter Verlag, Berlin, Expositions in Mathematics, Vol. 41 (2006).
- Hermann Heineken, Automorphism groups of torsionfree nilpotent groups of class two, Symposia Mathematica, Vol. XVII, Academic Press, London, 1976, pp. 235–250. (Convegno sui Gruppi Infiniti, INDAM, Roma, 1973),. MR 0419627
- Thomas Jech, Set theory, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506523
- C. St. J. A. Nash-Williams, On well-quasi-ordering infinite trees, Proc. Cambridge Philos. Soc. 61 (1965), 697–720. MR 175814, DOI 10.1017/s0305004100039062
- Saharon Shelah, Infinite abelian groups, Whitehead problem and some constructions, Israel J. Math. 18 (1974), 243–256. MR 357114, DOI 10.1007/BF02757281
- Saharon Shelah, Better quasi-orders for uncountable cardinals, Israel J. Math. 42 (1982), no. 3, 177–226. MR 687127, DOI 10.1007/BF02802723
- Daniel Simson, Linear representations of partially ordered sets and vector space categories, Algebra, Logic and Applications, vol. 4, Gordon and Breach Science Publishers, Montreux, 1992. MR 1241646
Bibliographic Information
- Rüdiger Göbel
- Affiliation: Fachbereich 6, Mathematik, Universität Duisburg Essen, D 45117 Essen, Germany
- Email: r.goebel@uni-due.de
- Saharon Shelah
- Affiliation: Institute of Mathematics, Hebrew University, Jerusalem, Israel – and – Department of Mathematics, Rutgers University-New Brunswick, Piscataway, New Jersey 08854
- MR Author ID: 160185
- ORCID: 0000-0003-0462-3152
- Email: shelah@math.huji.ac.il
- Received by editor(s): January 19, 2006
- Received by editor(s) in revised form: February 19, 2006
- Published electronically: January 8, 2007
- Additional Notes: This work was supported by the project No. I-706-54.6/2001 of the German-Israeli Foundation for Scientific Research & Development.
This is GbSh880 in the second author’s list of publications. - Communicated by: Bernd Ulrich
- © Copyright 2007 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 135 (2007), 1641-1649
- MSC (2000): Primary 13C05, 13C10, 13C13, 20K15, 20K25, 20K30; Secondary 03E05, 03E35
- DOI: https://doi.org/10.1090/S0002-9939-07-08725-4
- MathSciNet review: 2286071