## On zeros of Eisenstein series for genus zero Fuchsian groups

HTML articles powered by AMS MathViewer

- by Heekyoung Hahn PDF
- Proc. Amer. Math. Soc.
**135**(2007), 2391-2401 Request permission

## Abstract:

Let $\Gamma \leq \text {SL}_{2}(\mathbb {R})$ be a genus zero Fuchsian group of the first kind with $\infty$ as a cusp, and let $E_{2k}^{\Gamma }$ be the holomorphic Eisenstein series of weight $2k$ on $\Gamma$ that is nonvanishing at $\infty$ and vanishes at all the other cusps (provided that such an Eisenstein series exists). Under certain assumptions on $\Gamma ,$ and on a choice of a fundamental domain $\mathcal {F}$, we prove that all but possibly $c(\Gamma ,\mathcal {F})$ of the nontrivial zeros of $E_{2k}^{\Gamma }$ lie on a certain subset of $\{z\in \mathfrak {H} : j_{\Gamma }(z)\in \mathbb {R}\}$. Here $c(\Gamma ,\mathcal {F})$ is a constant that does not depend on the weight, $\mathfrak {H}$ is the upper half-plane, and $j_{\Gamma }$ is the canonical hauptmodul for $\Gamma .$## References

- George E. Andrews, Richard Askey, and Ranjan Roy,
*Special functions*, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR**1688958**, DOI 10.1017/CBO9781107325937 - Matthew Boylan,
*Swinnerton-Dyer type congruences for certain Eisenstein series*, $q$-series with applications to combinatorics, number theory, and physics (Urbana, IL, 2000) Contemp. Math., vol. 291, Amer. Math. Soc., Providence, RI, 2001, pp. 93–108. MR**1874523**, DOI 10.1090/conm/291/04894 - Fred Diamond and John Im,
*Modular forms and modular curves*, Seminar on Fermat’s Last Theorem (Toronto, ON, 1993–1994) CMS Conf. Proc., vol. 17, Amer. Math. Soc., Providence, RI, 1995, pp. 39–133. MR**1357209** - Jayce Getz,
*A generalization of a theorem of Rankin and Swinnerton-Dyer on zeros of modular forms*, Proc. Amer. Math. Soc.**132**(2004), no. 8, 2221–2231. MR**2052397**, DOI 10.1090/S0002-9939-04-07478-7 - J. S. Milne,
*Modular functions and modular forms*, Course note, http://www.jmilne.org/math, Univ. of Michigan, 1997. - K. Ono,
*The web of modularity: Arithmetic of the coefficients of modular forms and $q$-series*, CBMS,**102**, American Math. Soc., Providence, Rhode Island, 2004. - K. Ono and K. Bringmann,
*Identities for traces of singular moduli*, Acta Arith.**119**(2005), 317–327. - F. K. C. Rankin and H. P. F. Swinnerton-Dyer,
*On the zeros of Eisenstein series*, Bull. London Math. Soc.**2**(1970), 169–170. - R. A. Rankin,
*The zeros of certain Poincaré series*, Compositio Math.**46**(1982), no. 3, 255–272. MR**664646** - Zeév Rudnick,
*On the asymptotic distribution of zeros of modular forms*, Int. Math. Res. Not.**34**(2005), 2059–2074. MR**2181743**, DOI 10.1155/IMRN.2005.2059 - Bruno Schoeneberg,
*Elliptic modular functions: an introduction*, Die Grundlehren der mathematischen Wissenschaften, Band 203, Springer-Verlag, New York-Heidelberg, 1974. Translated from the German by J. R. Smart and E. A. Schwandt. MR**0412107** - Goro Shimura,
*Introduction to the arithmetic theory of automorphic functions*, Kanô Memorial Lectures, No. 1, Iwanami Shoten Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. Publications of the Mathematical Society of Japan, No. 11. MR**0314766** - H. A. Verrill,
*Fundamental domain drawer, Java*, http://www.math.lsu.edu/~verrill/ fundomain.

## Additional Information

**Heekyoung Hahn**- Affiliation: Department of Mathematics, University of Rochester, Rochester, New York 14627
- MR Author ID: 707443
- Email: hahn@math.rochester.edu
- Received by editor(s): March 21, 2006
- Received by editor(s) in revised form: April 27, 2006
- Published electronically: March 29, 2007
- Additional Notes: This research was supported in part by a National Science Foundation FRG grant (DMS 0244660)
- Communicated by: Ken Ono
- © Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**135**(2007), 2391-2401 - MSC (2000): Primary 11F03, 11F11
- DOI: https://doi.org/10.1090/S0002-9939-07-08763-1
- MathSciNet review: 2302560