Stanley-Reisner ideals whose powers have finite length cohomologies
HTML articles powered by AMS MathViewer
- by Shiro Goto and Yukihide Takayama
- Proc. Amer. Math. Soc. 135 (2007), 2355-2364
- DOI: https://doi.org/10.1090/S0002-9939-07-08795-3
- Published electronically: March 22, 2007
- PDF | Request permission
Abstract:
We introduce a class of Stanley-Reisner ideals called a generalized complete intersection, which is characterized by the property that all the residue class rings of powers of the ideal have FLC. We also give a combinatorial characterization of such ideals.References
- Rüdiger Achilles and Wolfgang Vogel, Über vollständige Durchschnitte in lokalen Ringen, Math. Nachr. 89 (1979), 285–298 (German). MR 546888, DOI 10.1002/mana.19790890123
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- R. C. Cowsik and M. V. Nori, On the fibres of blowing up, J. Indian Math. Soc. (N.S.) 40 (1976), no. 1-4, 217–222 (1977). MR 572990
- M. Herrmann and U. Orbanz, Faserdimensionen von Aufblasungen lokaler Ringe und Äquimultiplizität, J. Math. Kyoto Univ. 20 (1980), no. 4, 651–659 (German). MR 592352, DOI 10.1215/kjm/1250522164
- Richard P. Stanley, Combinatorics and commutative algebra, 2nd ed., Progress in Mathematics, vol. 41, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1453579
- Yukihide Takayama, Combinatorial characterizations of generalized Cohen-Macaulay monomial ideals, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 48(96) (2005), no. 3, 327–344. MR 2165349
- Rafael H. Villarreal, Monomial algebras, Monographs and Textbooks in Pure and Applied Mathematics, vol. 238, Marcel Dekker, Inc., New York, 2001. MR 1800904
- Rolf Waldi, Vollständige Durchschnitte in Cohen-Macaulay-Ringen, Arch. Math. (Basel) 31 (1978/79), no. 5, 439–442 (German). MR 526608, DOI 10.1007/BF01226472
Bibliographic Information
- Shiro Goto
- Affiliation: Department of Mathematics, School of Science and Technology, Meiji University, 214-8571, Japan
- MR Author ID: 192104
- Email: goto@math.meiji.ac.jp
- Yukihide Takayama
- Affiliation: Department of Mathematical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
- Email: takayama@se.ritsumei.ac.jp
- Received by editor(s): January 11, 2006
- Received by editor(s) in revised form: April 13, 2006
- Published electronically: March 22, 2007
- Communicated by: Bernd Ulrich
- © Copyright 2007 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 135 (2007), 2355-2364
- MSC (2000): Primary 13F55; Secondary 13H10
- DOI: https://doi.org/10.1090/S0002-9939-07-08795-3
- MathSciNet review: 2302556