## Hardy spaces and partial derivatives of conjugate harmonic functions

HTML articles powered by AMS MathViewer

- by Anatoly Ryabogin and Dmitry Ryabogin PDF
- Proc. Amer. Math. Soc.
**135**(2007), 2461-2470 Request permission

## Abstract:

In this paper we give necessary and sufficient conditions for a harmonic vector and all its partial derivatives to belong to $H^p(\mathbf {R}^{n+1}_+)$ for all $p>0$.## References

- A. A. Bonami,
*Integral inequalities for conjugate harmonic functions of serveral variables*, Mat. Sb. (N.S.)**87(129)**(1972), 188β203 (Russian). MR**0299818** - D. L. Burkholder, R. F. Gundy, and M. L. Silverstein,
*A maximal function characterization of the class $H^{p}$*, Trans. Amer. Math. Soc.**157**(1971), 137β153. MR**274767**, DOI 10.1090/S0002-9947-1971-0274767-6 - A.-P. CalderΓ³n and A. Zygmund,
*On higher gradients of harmonic functions*, Studia Math.**24**(1964), 211β226. MR**167631**, DOI 10.4064/sm-24-2-211-226 - C. Fefferman and E. M. Stein,
*$H^{p}$ spaces of several variables*, Acta Math.**129**(1972), no.Β 3-4, 137β193. MR**447953**, DOI 10.1007/BF02392215 - T. M. Flett,
*Inequalities for the $p$th mean values of harmonic and subharmonic functions with $p\leq 1$*, Proc. London Math. Soc. (3)**20**(1970), 249β275. MR**257387**, DOI 10.1112/plms/s3-20.2.249 - V. I. Krylov,
*On functions regular in the half-plane*, Math., Sb., (1939),**6**(48), pp.95-138. - Γ. Kuran,
*Classes of subharmonic functions in $R^{n}\times (0,\,+\infty )$*, Proc. London Math. Soc. (3)**16**(1966), 473β492. MR**203059**, DOI 10.1112/plms/s3-16.1.473 - I. Privalov, Subharmonic functions, Moscow, 1937.
- A. K. Ryabogin,
*Conjugate harmonic functions of the Hardy class*, Izv. Vyssh. Uchebn. Zaved. Mat.**9**(1991), 47β53 (Russian); English transl., Soviet Math. (Iz. VUZ)**35**(1991), no.Β 9, 46β51. MR**1169391** - A. K. Rjabogin,
*Boundary values of conjugate harmonic functions of several variables*, Izv. Vyssh. Uchebn. Zaved. Mat.**12**(1980), 50β54 (Russian). MR**606677** - E. D. Solomentsev,
*On classes of subharmonic functions in the half-space*, Notes of Moscow State Univ.,**10**, (1958). - Elias M. Stein,
*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095** - Elias M. Stein and Guido Weiss,
*On the theory of harmonic functions of several variables. I. The theory of $H^{p}$-spaces*, Acta Math.**103**(1960), 25β62. MR**121579**, DOI 10.1007/BF02546524 - E. M. Stein and G. Weiss,
*Generalization of the Cauchy-Riemann equations and representations of the rotation group*, Amer. J. Math.**90**(1968), 163β196. MR**223492**, DOI 10.2307/2373431 - E. M. Stein and G. Weiss, An introduction to harmonic analysis on Euclidean spaces, Princeton University Press, Princeton NJ, 1969.
- Thomas H. Wolff,
*Counterexamples with harmonic gradients in $\textbf {R}^3$*, Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ, 1991) Princeton Math. Ser., vol. 42, Princeton Univ. Press, Princeton, NJ, 1995, pp.Β 321β384. MR**1315554** - A. Zygmund,
*Trigonometric series: Vols. I, II*, Cambridge University Press, London-New York, 1968. Second edition, reprinted with corrections and some additions. MR**0236587**

## Additional Information

**Anatoly Ryabogin**- Affiliation: Department of Mathematics, Ben Gurion University of the Negev, P.O.B. 653, Beβer Sheva 84105, Israel
- Email: ryabs@math.ksu.edu
**Dmitry Ryabogin**- Affiliation: Department of Mathematics, Kansas State University, Manhattan, Kansas 66506-2602
- Email: ryabs@math.ksu.edu
- Received by editor(s): January 31, 2006
- Published electronically: April 5, 2007
- Communicated by: Mei-Chi Shaw
- © Copyright 2007 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**135**(2007), 2461-2470 - MSC (2000): Primary 30E25; Secondary 42B25
- DOI: https://doi.org/10.1090/S0002-9939-07-08940-X
- MathSciNet review: 2302567