Hardy spaces and partial derivatives of conjugate harmonic functions
HTML articles powered by AMS MathViewer
- by Anatoly Ryabogin and Dmitry Ryabogin
- Proc. Amer. Math. Soc. 135 (2007), 2461-2470
- DOI: https://doi.org/10.1090/S0002-9939-07-08940-X
- Published electronically: April 5, 2007
- PDF | Request permission
Abstract:
In this paper we give necessary and sufficient conditions for a harmonic vector and all its partial derivatives to belong to $H^p(\mathbf {R}^{n+1}_+)$ for all $p>0$.References
- A. A. Bonami, Integral inequalities for conjugate harmonic functions of serveral variables, Mat. Sb. (N.S.) 87(129) (1972), 188β203 (Russian). MR 0299818
- D. L. Burkholder, R. F. Gundy, and M. L. Silverstein, A maximal function characterization of the class $H^{p}$, Trans. Amer. Math. Soc. 157 (1971), 137β153. MR 274767, DOI 10.1090/S0002-9947-1971-0274767-6
- A.-P. CalderΓ³n and A. Zygmund, On higher gradients of harmonic functions, Studia Math. 24 (1964), 211β226. MR 167631, DOI 10.4064/sm-24-2-211-226
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no.Β 3-4, 137β193. MR 447953, DOI 10.1007/BF02392215
- T. M. Flett, Inequalities for the $p$th mean values of harmonic and subharmonic functions with $p\leq 1$, Proc. London Math. Soc. (3) 20 (1970), 249β275. MR 257387, DOI 10.1112/plms/s3-20.2.249
- V. I. Krylov, On functions regular in the half-plane, Math., Sb., (1939), 6 (48), pp.95-138.
- Γ. Kuran, Classes of subharmonic functions in $R^{n}\times (0,\,+\infty )$, Proc. London Math. Soc. (3) 16 (1966), 473β492. MR 203059, DOI 10.1112/plms/s3-16.1.473
- I. Privalov, Subharmonic functions, Moscow, 1937.
- A. K. Ryabogin, Conjugate harmonic functions of the Hardy class, Izv. Vyssh. Uchebn. Zaved. Mat. 9 (1991), 47β53 (Russian); English transl., Soviet Math. (Iz. VUZ) 35 (1991), no.Β 9, 46β51. MR 1169391
- A. K. Rjabogin, Boundary values of conjugate harmonic functions of several variables, Izv. Vyssh. Uchebn. Zaved. Mat. 12 (1980), 50β54 (Russian). MR 606677
- E. D. Solomentsev, On classes of subharmonic functions in the half-space, Notes of Moscow State Univ., 10, (1958).
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein and Guido Weiss, On the theory of harmonic functions of several variables. I. The theory of $H^{p}$-spaces, Acta Math. 103 (1960), 25β62. MR 121579, DOI 10.1007/BF02546524
- E. M. Stein and G. Weiss, Generalization of the Cauchy-Riemann equations and representations of the rotation group, Amer. J. Math. 90 (1968), 163β196. MR 223492, DOI 10.2307/2373431
- E. M. Stein and G. Weiss, An introduction to harmonic analysis on Euclidean spaces, Princeton University Press, Princeton NJ, 1969.
- Thomas H. Wolff, Counterexamples with harmonic gradients in $\textbf {R}^3$, Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ, 1991) Princeton Math. Ser., vol. 42, Princeton Univ. Press, Princeton, NJ, 1995, pp.Β 321β384. MR 1315554
- A. Zygmund, Trigonometric series: Vols. I, II, Cambridge University Press, London-New York, 1968. Second edition, reprinted with corrections and some additions. MR 0236587
Bibliographic Information
- Anatoly Ryabogin
- Affiliation: Department of Mathematics, Ben Gurion University of the Negev, P.O.B. 653, Beβer Sheva 84105, Israel
- Email: ryabs@math.ksu.edu
- Dmitry Ryabogin
- Affiliation: Department of Mathematics, Kansas State University, Manhattan, Kansas 66506-2602
- Email: ryabs@math.ksu.edu
- Received by editor(s): January 31, 2006
- Published electronically: April 5, 2007
- Communicated by: Mei-Chi Shaw
- © Copyright 2007 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 135 (2007), 2461-2470
- MSC (2000): Primary 30E25; Secondary 42B25
- DOI: https://doi.org/10.1090/S0002-9939-07-08940-X
- MathSciNet review: 2302567