## Semiclassical analysis for highly degenerate potentials

HTML articles powered by AMS MathViewer

- by P. Álvarez-Caudevilla and J. López-Gómez
- Proc. Amer. Math. Soc.
**136**(2008), 665-675 - DOI: https://doi.org/10.1090/S0002-9939-07-09076-4
- Published electronically: November 2, 2007
- PDF | Request permission

## Abstract:

This paper characterizes the semi-classical limit of the fundamental energy, \begin{equation*} E(h):= \sigma _1[-h^2\Delta +a(x);\Omega ], \end{equation*} and ground state $\psi _h$ of the Schrödinger operator $-h^2\Delta +a$ in a bounded domain $\Omega$, in the highly degenerate case when $a\geq 0$ and $a^{-1}(0)$ consists of two components, say $\Omega _{0,1}$ and $\Omega _{0,2}$. The main result establishes that \begin{equation*} \lim _{h\downarrow 0} \frac {E(h)}{h^2}= \min \left \{\sigma _1[-\Delta ;\Omega _{0,i}], \; i=1,2 \right \} \end{equation*} and that $\psi _h$ approximates in $H_0^1(\Omega )$ the ground state of $-\Delta$ in $\Omega _{0,i}$ if \begin{equation*} \sigma _1[-\Delta ;\Omega _{0,i}]< \sigma _1[-\Delta ;\Omega _{0,j}],\qquad j \in \{1,2\}\setminus \{i\}. \end{equation*}## References

- Herbert Amann,
*Dual semigroups and second order linear elliptic boundary value problems*, Israel J. Math.**45**(1983), no. 2-3, 225–254. MR**719122**, DOI 10.1007/BF02774019 - Ivo Babuška and Rudolf Výborný,
*Continuous dependence of eigenvalues on the domain*, Czechoslovak Math. J.**15(90)**(1965), 169–178 (English, with Russian summary). MR**182799** - J. Bourgain,
*Eigenfunction bounds for the Laplacian on the $n$-torus*, Internat. Math. Res. Notices**3**(1993), 61–66. MR**1208826**, DOI 10.1155/S1073792893000066 - Michael G. Crandall and Paul H. Rabinowitz,
*Bifurcation, perturbation of simple eigenvalues and linearized stability*, Arch. Rational Mech. Anal.**52**(1973), 161–180. MR**341212**, DOI 10.1007/BF00282325 - E. N. Dancer,
*Some remarks on classical problems and fine properties of Sobolev spaces*, Differential Integral Equations**9**(1996), no. 3, 437–446. MR**1371700** - E. N. Dancer and J. López-Gómez,
*Semiclassical analysis of general second order elliptic operators on bounded domains*, Trans. Amer. Math. Soc.**352**(2000), no. 8, 3723–3742. MR**1694285**, DOI 10.1090/S0002-9947-00-02534-4 - Harold Donnelly,
*Bounds for eigenfunctions of the Laplacian on compact Riemannian manifolds*, J. Funct. Anal.**187**(2001), no. 1, 247–261. MR**1867351**, DOI 10.1006/jfan.2001.3817 - David Gilbarg and Neil S. Trudinger,
*Elliptic partial differential equations of second order*, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR**1814364** - Peter Hess,
*Periodic-parabolic boundary value problems and positivity*, Pitman Research Notes in Mathematics Series, vol. 247, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1991. MR**1100011** - Tosio Kato,
*Superconvexity of the spectral radius, and convexity of the spectral bound and the type*, Math. Z.**180**(1982), no. 2, 265–273. MR**661703**, DOI 10.1007/BF01318910 - Tosio Kato,
*Perturbation theory for linear operators*, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR**1335452** - Julián López-Gómez,
*On linear weighted boundary value problems*, Partial differential equations (Han-sur-Lesse, 1993) Math. Res., vol. 82, Akademie-Verlag, Berlin, 1994, pp. 188–203. MR**1322747** - Julián López-Gómez,
*The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems*, J. Differential Equations**127**(1996), no. 1, 263–294. MR**1387266**, DOI 10.1006/jdeq.1996.0070 - Julián López-Gómez,
*Spectral theory and nonlinear functional analysis*, Chapman & Hall/CRC Research Notes in Mathematics, vol. 426, Chapman & Hall/CRC, Boca Raton, FL, 2001. MR**1823860**, DOI 10.1201/9781420035506 - Julián López-Gómez and Marcela Molina-Meyer,
*The maximum principle for cooperative weakly coupled elliptic systems and some applications*, Differential Integral Equations**7**(1994), no. 2, 383–398. MR**1255895** - Barry Simon,
*Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions*, Ann. Inst. H. Poincaré Sect. A (N.S.)**38**(1983), no. 3, 295–308 (English, with French summary). MR**708966** - Barry Simon,
*Semiclassical analysis of low lying eigenvalues. II. Tunneling*, Ann. of Math. (2)**120**(1984), no. 1, 89–118. MR**750717**, DOI 10.2307/2007072

## Bibliographic Information

**P. Álvarez-Caudevilla**- Affiliation: Departamento de Matemáticas, Universidad Católica de Ávila, Ávila, Spain
- Email: pablocaude@eresmas.com
**J. López-Gómez**- Affiliation: Departamento de Matemática Aplicada, Universidad Complutense de Madrid, 28040-Madrid, Spain
- Email: Lopez_Gomez@mat.ucm.es
- Received by editor(s): January 19, 2007
- Published electronically: November 2, 2007
- Additional Notes: This work was partially supported by the Ministry of Education and Science of Spain under research grants REN2003–00707 and CGL2006-00524/BOS
- Communicated by: David S. Tartakoff
- © Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**136**(2008), 665-675 - MSC (2000): Primary 35B25, 35P15, 35J10, 31C12
- DOI: https://doi.org/10.1090/S0002-9939-07-09076-4
- MathSciNet review: 2358508