Semiclassical analysis for highly degenerate potentials
HTML articles powered by AMS MathViewer
- by P. Álvarez-Caudevilla and J. López-Gómez
- Proc. Amer. Math. Soc. 136 (2008), 665-675
- DOI: https://doi.org/10.1090/S0002-9939-07-09076-4
- Published electronically: November 2, 2007
- PDF | Request permission
Abstract:
This paper characterizes the semi-classical limit of the fundamental energy, \begin{equation*} E(h):= \sigma _1[-h^2\Delta +a(x);\Omega ], \end{equation*} and ground state $\psi _h$ of the Schrödinger operator $-h^2\Delta +a$ in a bounded domain $\Omega$, in the highly degenerate case when $a\geq 0$ and $a^{-1}(0)$ consists of two components, say $\Omega _{0,1}$ and $\Omega _{0,2}$. The main result establishes that \begin{equation*} \lim _{h\downarrow 0} \frac {E(h)}{h^2}= \min \left \{\sigma _1[-\Delta ;\Omega _{0,i}], \; i=1,2 \right \} \end{equation*} and that $\psi _h$ approximates in $H_0^1(\Omega )$ the ground state of $-\Delta$ in $\Omega _{0,i}$ if \begin{equation*} \sigma _1[-\Delta ;\Omega _{0,i}]< \sigma _1[-\Delta ;\Omega _{0,j}],\qquad j \in \{1,2\}\setminus \{i\}. \end{equation*}References
- Herbert Amann, Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math. 45 (1983), no. 2-3, 225–254. MR 719122, DOI 10.1007/BF02774019
- Ivo Babuška and Rudolf Výborný, Continuous dependence of eigenvalues on the domain, Czechoslovak Math. J. 15(90) (1965), 169–178 (English, with Russian summary). MR 182799
- J. Bourgain, Eigenfunction bounds for the Laplacian on the $n$-torus, Internat. Math. Res. Notices 3 (1993), 61–66. MR 1208826, DOI 10.1155/S1073792893000066
- Michael G. Crandall and Paul H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal. 52 (1973), 161–180. MR 341212, DOI 10.1007/BF00282325
- E. N. Dancer, Some remarks on classical problems and fine properties of Sobolev spaces, Differential Integral Equations 9 (1996), no. 3, 437–446. MR 1371700
- E. N. Dancer and J. López-Gómez, Semiclassical analysis of general second order elliptic operators on bounded domains, Trans. Amer. Math. Soc. 352 (2000), no. 8, 3723–3742. MR 1694285, DOI 10.1090/S0002-9947-00-02534-4
- Harold Donnelly, Bounds for eigenfunctions of the Laplacian on compact Riemannian manifolds, J. Funct. Anal. 187 (2001), no. 1, 247–261. MR 1867351, DOI 10.1006/jfan.2001.3817
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364
- Peter Hess, Periodic-parabolic boundary value problems and positivity, Pitman Research Notes in Mathematics Series, vol. 247, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1991. MR 1100011
- Tosio Kato, Superconvexity of the spectral radius, and convexity of the spectral bound and the type, Math. Z. 180 (1982), no. 2, 265–273. MR 661703, DOI 10.1007/BF01318910
- Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452
- Julián López-Gómez, On linear weighted boundary value problems, Partial differential equations (Han-sur-Lesse, 1993) Math. Res., vol. 82, Akademie-Verlag, Berlin, 1994, pp. 188–203. MR 1322747
- Julián López-Gómez, The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems, J. Differential Equations 127 (1996), no. 1, 263–294. MR 1387266, DOI 10.1006/jdeq.1996.0070
- Julián López-Gómez, Spectral theory and nonlinear functional analysis, Chapman & Hall/CRC Research Notes in Mathematics, vol. 426, Chapman & Hall/CRC, Boca Raton, FL, 2001. MR 1823860, DOI 10.1201/9781420035506
- Julián López-Gómez and Marcela Molina-Meyer, The maximum principle for cooperative weakly coupled elliptic systems and some applications, Differential Integral Equations 7 (1994), no. 2, 383–398. MR 1255895
- Barry Simon, Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions, Ann. Inst. H. Poincaré Sect. A (N.S.) 38 (1983), no. 3, 295–308 (English, with French summary). MR 708966
- Barry Simon, Semiclassical analysis of low lying eigenvalues. II. Tunneling, Ann. of Math. (2) 120 (1984), no. 1, 89–118. MR 750717, DOI 10.2307/2007072
Bibliographic Information
- P. Álvarez-Caudevilla
- Affiliation: Departamento de Matemáticas, Universidad Católica de Ávila, Ávila, Spain
- Email: pablocaude@eresmas.com
- J. López-Gómez
- Affiliation: Departamento de Matemática Aplicada, Universidad Complutense de Madrid, 28040-Madrid, Spain
- Email: Lopez_Gomez@mat.ucm.es
- Received by editor(s): January 19, 2007
- Published electronically: November 2, 2007
- Additional Notes: This work was partially supported by the Ministry of Education and Science of Spain under research grants REN2003–00707 and CGL2006-00524/BOS
- Communicated by: David S. Tartakoff
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 665-675
- MSC (2000): Primary 35B25, 35P15, 35J10, 31C12
- DOI: https://doi.org/10.1090/S0002-9939-07-09076-4
- MathSciNet review: 2358508