Differential structure of the Thompson components of selfadjoint operators
HTML articles powered by AMS MathViewer
- by Guillermina Fongi and Alejandra Maestripieri
- Proc. Amer. Math. Soc. 136 (2008), 613-622
- DOI: https://doi.org/10.1090/S0002-9939-07-09133-2
- Published electronically: November 2, 2007
- PDF | Request permission
Abstract:
Different equivalence relations are defined in the set $L(\mathcal {H})^s$ of selfadjoint operators of a Hilbert space $\mathcal {H}$ in order to extend a very well known relation in the cone of positive operators. As in the positive case, for $a \in L(\mathcal {H})^s$ the equivalence class $C_a$ admits a differential structure, which is compatible with a complete metric defined on $C_a$. This metric coincides with the Thompson metric when $a$ is positive.References
- Frank F. Bonsall and John Duncan, Complete normed algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80, Springer-Verlag, New York-Heidelberg, 1973. MR 0423029
- G. Corach and A. L. Maestripieri, Differential and metrical structure of positive operators, Positivity 3 (1999), no. 4, 297–315. MR 1721561, DOI 10.1023/A:1009781308281
- G. Corach and A. L. Maestripieri, Differential geometry on Thompson’s components of positive operators, Rep. Math. Phys. 45 (2000), no. 1, 23–37. MR 1751502, DOI 10.1016/S0034-4877(00)88870-9
- G. Corach, A. Maestripieri, and D. Stojanoff, Orbits of positive operators from a differentiable viewpoint, Positivity 8 (2004), no. 1, 31–48. MR 2053574, DOI 10.1023/B:POST.0000023202.40428.a8
- Gustavo Corach, Horacio Porta, and Lázaro Recht, The geometry of the space of selfadjoint invertible elements in a $C^*$-algebra, Integral Equations Operator Theory 16 (1993), no. 3, 333–359. MR 1209304, DOI 10.1007/BF01204226
- R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413–415. MR 203464, DOI 10.1090/S0002-9939-1966-0203464-1
- P. A. Fillmore and J. P. Williams, On operator ranges, Advances in Math. 7 (1971), 254–281. MR 293441, DOI 10.1016/S0001-8708(71)80006-3
- Yoshinobu Kato, An elementary proof of Sz.-Nagy’s theorem, Math. Japon. 20 (1975), no. 3, 257–258. MR 405129
- Kobayashi, S. and Nomizu, K., Foundations of differential geometry. Interscience, New York, 1969.
- Roger D. Nussbaum, Hilbert’s projective metric and iterated nonlinear maps, Mem. Amer. Math. Soc. 75 (1988), no. 391, iv+137. MR 961211, DOI 10.1090/memo/0391
- Roger D. Nussbaum, Finsler structures for the part metric and Hilbert’s projective metric and applications to ordinary differential equations, Differential Integral Equations 7 (1994), no. 5-6, 1649–1707. MR 1269677
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
- A. C. Thompson, On certain contraction mappings in a partially ordered vector space. , Proc. Amer. Math. Soc. 14 (1963), 438–443. MR 0149237, DOI 10.1090/S0002-9939-1963-0149237-7
Bibliographic Information
- Guillermina Fongi
- Affiliation: Instituto Argentino de Matemática, CONICET, Saavedra 15, 1083 Buenos Aires, Argentina
- Email: fongig@fceia.unr.edu.ar
- Alejandra Maestripieri
- Affiliation: Instituto de Ciencias, Universidad Nacional General Sarmiento, 1613 Los Polvorines, Argentina
- Email: amaestri@ungs.edu.ar
- Received by editor(s): December 4, 2006
- Published electronically: November 2, 2007
- Communicated by: Joseph A. Ball
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 613-622
- MSC (2000): Primary 47B15; Secondary 58B20
- DOI: https://doi.org/10.1090/S0002-9939-07-09133-2
- MathSciNet review: 2358503