## A generating function for sums of multiple zeta values and its applications

HTML articles powered by AMS MathViewer

- by Takashi Aoki, Yasuhiro Kombu and Yasuo Ohno PDF
- Proc. Amer. Math. Soc.
**136**(2008), 387-395 Request permission

## Abstract:

A generating function for specified sums of multiple zeta values is defined and a differential equation that characterizes this function is given. As applications, some relations for multiple zeta values over the field of rational numbers are discussed.## References

- Takashi Aoki and Yasuo Ohno,
*Sum relations for multiple zeta values and connection formulas for the Gauss hypergeometric functions*, Publ. Res. Inst. Math. Sci.**41**(2005), no. 2, 329–337. MR**2138027** - Tsuneo Arakawa and Masanobu Kaneko,
*Multiple zeta values, poly-Bernoulli numbers, and related zeta functions*, Nagoya Math. J.**153**(1999), 189–209. MR**1684557**, DOI 10.1017/S0027763000006954 - J. M. Borwein, D. M. Bradley, and D. J. Broadhurst,
*Evaluations of $k$-fold Euler/Zagier sums: a compendium of results for arbitrary $k$*, Electron. J. Combin.**4**(1997), no. 2, Research Paper 5, approx. 21. The Wilf Festschrift (Philadelphia, PA, 1996). MR**1444152** - Karl Dilcher,
*Some $q$-series identities related to divisor functions*, Discrete Math.**145**(1995), no. 1-3, 83–93. MR**1356587**, DOI 10.1016/0012-365X(95)00092-B - A. Erdélyi et al. (eds.), Higher Transcendental Functions, vol. 1, Robert E. Krieger Publishing Company, Malabar, 1985.
- L. Euler, Meditationes circa singulare serierum genus, Novi Comm. Acad. Sci. Petropol
**20**(1775), 140–186, reprinted in Opera Omnia ser. I, vol. 15, B. G. Teubner, Berlin (1927), 217-267. - Andrew Granville,
*A decomposition of Riemann’s zeta-function*, Analytic number theory (Kyoto, 1996) London Math. Soc. Lecture Note Ser., vol. 247, Cambridge Univ. Press, Cambridge, 1997, pp. 95–101. MR**1694987**, DOI 10.1017/CBO9780511666179.009 - Michael E. Hoffman,
*Multiple harmonic series*, Pacific J. Math.**152**(1992), no. 2, 275–290. MR**1141796** - Michael E. Hoffman,
*Algebraic aspects of multiple zeta values*, Zeta functions, topology and quantum physics, Dev. Math., vol. 14, Springer, New York, 2005, pp. 51–73. MR**2179272**, DOI 10.1007/0-387-24981-8_{4} - Michael E. Hoffman and Yasuo Ohno,
*Relations of multiple zeta values and their algebraic expression*, J. Algebra**262**(2003), no. 2, 332–347. MR**1971042**, DOI 10.1016/S0021-8693(03)00016-4 - Y. Kombu, Multiple zeta values and hypergeometric differential equations (in Japanese), Kinki University master’s thesis (2003).
- Tu Quoc Thang Le and Jun Murakami,
*Kontsevich’s integral for the Homfly polynomial and relations between values of multiple zeta functions*, Topology Appl.**62**(1995), no. 2, 193–206. MR**1320252**, DOI 10.1016/0166-8641(94)00054-7 - Yasuo Ohno,
*A generalization of the duality and sum formulas on the multiple zeta values*, J. Number Theory**74**(1999), no. 1, 39–43. MR**1670544**, DOI 10.1006/jnth.1998.2314 - Yasuo Ohno,
*Sum relations for multiple zeta values*, Zeta functions, topology and quantum physics, Dev. Math., vol. 14, Springer, New York, 2005, pp. 131–144. MR**2179276**, DOI 10.1007/0-387-24981-8_{8} - Yasuo Ohno and Noriko Wakabayashi,
*Cyclic sum of multiple zeta values*, Acta Arith.**123**(2006), no. 3, 289–295. MR**2263259**, DOI 10.4064/aa123-3-5 - Yasuo Ohno and Don Zagier,
*Multiple zeta values of fixed weight, depth, and height*, Indag. Math. (N.S.)**12**(2001), no. 4, 483–487. MR**1908876**, DOI 10.1016/S0019-3577(01)80037-9 - Jun-ichi Okuda and Kimio Ueno,
*Relations for multiple zeta values and Mellin transforms of multiple polylogarithms*, Publ. Res. Inst. Math. Sci.**40**(2004), no. 2, 537–564. MR**2049646** - E. C. Titchmarsh,
*The theory of the Riemann zeta-function*, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR**882550** - Don Zagier,
*Values of zeta functions and their applications*, First European Congress of Mathematics, Vol. II (Paris, 1992) Progr. Math., vol. 120, Birkhäuser, Basel, 1994, pp. 497–512. MR**1341859** - D. Zagier, Multiple zeta values. Unpublished manuscript, Bonn, 1995.

## Additional Information

**Takashi Aoki**- Affiliation: Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
- Email: aoki@math.kindai.ac.jp
**Yasuhiro Kombu**- Affiliation: Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
- Email: kombu@math.kindai.ac.jp
**Yasuo Ohno**- Affiliation: Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
- Email: ohno@math.kindai.ac.jp
- Received by editor(s): August 2, 2006
- Published electronically: November 1, 2007
- Additional Notes: The first author was supported in part by JSPS Grant-in-Aid No. 18540197.

The third author was supported in part by JSPS Grant-in-Aid No. 18540197 and No. 18740020. - Communicated by: Jonathan M. Borwein
- © Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**136**(2008), 387-395 - MSC (2000): Primary 11M06, 40B05; Secondary 33C05
- DOI: https://doi.org/10.1090/S0002-9939-07-09175-7
- MathSciNet review: 2358475