The stability of exceptional bundles on complete intersection $3$-folds
HTML articles powered by AMS MathViewer
- by Rosa Maria Miró-Roig and Helena Soares
- Proc. Amer. Math. Soc. 136 (2008), 3751-3757
- DOI: https://doi.org/10.1090/S0002-9939-08-09258-7
- Published electronically: June 20, 2008
- PDF | Request permission
Abstract:
A very long-standing problem in Algebraic Geometry is to determine the stability of exceptional vector bundles on smooth projective varieties. In this paper we address this problem and we prove that any exceptional vector bundle on a smooth complete intersection $3$-fold $Y\subset \mathbb {P}^n$ of type $(d_1,\ldots ,d_{n-3})$ with $d_1+\cdots + d_{n-3}\leq n$ and $n\geq 4$ is stable.References
- Brambilla, C., Cokernel bundles and Fibonacci bundles, Math. Nachr. (to appear).
- L. Costa and R. M. Miró-Roig, Tilting sheaves on toric varieties, Math. Z. 248 (2004), no. 4, 849–865. MR 2103545, DOI 10.1007/s00209-004-0684-6
- L. Costa and R. M. Miró-Roig, Derived categories of projective bundles, Proc. Amer. Math. Soc. 133 (2005), no. 9, 2533–2537. MR 2146195, DOI 10.1090/S0002-9939-05-07846-9
- Costa, L., Miró-Roig, R. M., Geometric collections and Castelnuovo-Mumford regularity, Math. Proc. Cambridge Philos. Soc. 143 (2007), 557–578.
- J.-M. Drezet, Fibrés exceptionnels et suite spectrale de Beilinson généralisée sur $\textbf {P}_2(\textbf {C})$, Math. Ann. 275 (1986), no. 1, 25–48 (French). MR 849052, DOI 10.1007/BF01458581
- J.-M. Drezet and J. Le Potier, Fibrés stables et fibrés exceptionnels sur $\textbf {P}_2$, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 193–243 (French, with English summary). MR 816365, DOI 10.24033/asens.1489
- A. L. Gorodentsev, Exceptional bundles on surfaces with a moving anticanonical class, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 4, 740–757, 895 (Russian); English transl., Math. USSR-Izv. 33 (1989), no. 1, 67–83. MR 966982, DOI 10.1070/IM1989v033n01ABEH000813
- A. L. Gorodentsev and A. N. Rudakov, Exceptional vector bundles on projective spaces, Duke Math. J. 54 (1987), no. 1, 115–130. MR 885779, DOI 10.1215/S0012-7094-87-05409-3
- Robin Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), no. 2, 121–176. MR 597077, DOI 10.1007/BF01467074
- M. M. Kapranov, On the derived categories of coherent sheaves on some homogeneous spaces, Invent. Math. 92 (1988), no. 3, 479–508. MR 939472, DOI 10.1007/BF01393744
- B. G. Moĭšezon, Algebraic homology classes on algebraic varieties, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 225–268 (Russian). MR 0213351
- A. N. Rudakov, Markov numbers and exceptional bundles on $\textbf {P}^2$, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 1, 100–112, 240 (Russian); English transl., Math. USSR-Izv. 32 (1989), no. 1, 99–112. MR 936525, DOI 10.1070/IM1989v032n01ABEH000738
- Helena Soares, Steiner bundles on the hyperquadric $Q_n\subset \Bbb P^{n+1},n\geq 3$, Comm. Algebra 35 (2007), no. 12, 4116–4136. MR 2372324, DOI 10.1080/00927870701544930
- D. Yu. Zube, The stability of exceptional bundles on three-dimensional projective space, Helices and vector bundles, London Math. Soc. Lecture Note Ser., vol. 148, Cambridge Univ. Press, Cambridge, 1990, pp. 115–117. MR 1074787, DOI 10.1017/CBO9780511721526.011
Bibliographic Information
- Rosa Maria Miró-Roig
- Affiliation: Facultat de Matemátiques, Departament d’Àlgebra i Geometria, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
- MR Author ID: 125375
- ORCID: 0000-0003-1375-6547
- Email: miro@ub.edu
- Helena Soares
- Affiliation: ISCTE Business School, Departamento de Métodos Quantitativos, Edifício ISCTE, Av. Forças Armadas, 1649-026 Lisboa, Portugal
- Email: helena.soares@ub.edu
- Received by editor(s): January 29, 2007
- Received by editor(s) in revised form: February 23, 2007
- Published electronically: June 20, 2008
- Additional Notes: The first author was partially supported by MTM2004-00666
The second author was partially supported by Fundação para a Ciência e Tecnologia under grant SFRH/BD/16589/2004, and by Departamento de Métodos Quantitativos do Instituto Superior de Ciências do Trabalho e da Empresa - Communicated by: Ted Chinburg
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 136 (2008), 3751-3757
- MSC (2000): Primary 14F05
- DOI: https://doi.org/10.1090/S0002-9939-08-09258-7
- MathSciNet review: 2425712