Polynomial splittings of metabelian von Neumann rho–invariants of knots
HTML articles powered by AMS MathViewer
- by Se-Goo Kim and Taehee Kim
- Proc. Amer. Math. Soc. 136 (2008), 4079-4087
- DOI: https://doi.org/10.1090/S0002-9939-08-09372-6
- Published electronically: June 4, 2008
- PDF | Request permission
Abstract:
We show that if the connected sum of two knots with coprime Alexander polynomials has vanishing von Neumann $\rho$–invariants associated with certain metabelian representations, then so do both knots. As an application, we give a new example of an infinite family of knots which are linearly independent in the knot concordance group.References
- A. J. Casson and C. McA. Gordon, Cobordism of classical knots, À la recherche de la topologie perdue, Progr. Math., vol. 62, Birkhäuser Boston, Boston, MA, 1986, pp. 181–199. With an appendix by P. M. Gilmer. MR 900252
- Jae Choon Cha, The structure of the rational concordance group of knots, Mem. Amer. Math. Soc. 189 (2007), no. 885, x+95. MR 2343079, DOI 10.1090/memo/0885
- Jeff Cheeger and Mikhael Gromov, Bounds on the von Neumann dimension of $L^2$-cohomology and the Gauss-Bonnet theorem for open manifolds, J. Differential Geom. 21 (1985), no. 1, 1–34. MR 806699
- Tim D. Cochran, Kent E. Orr, and Peter Teichner, Knot concordance, Whitney towers and $L^2$-signatures, Ann. of Math. (2) 157 (2003), no. 2, 433–519. MR 1973052, DOI 10.4007/annals.2003.157.433
- Tim D. Cochran, Kent E. Orr, and Peter Teichner, Structure in the classical knot concordance group, Comment. Math. Helv. 79 (2004), no. 1, 105–123. MR 2031301, DOI 10.1007/s00014-001-0793-6
- Stefan Friedl, Eta invariants as sliceness obstructions and their relation to Casson-Gordon invariants, Algebr. Geom. Topol. 4 (2004), 893–934. MR 2100685, DOI 10.2140/agt.2004.4.893
- Patrick Gilmer, Classical knot and link concordance, Comment. Math. Helv. 68 (1993), no. 1, 1–19. MR 1201199, DOI 10.1007/BF02565807
- Robert E. Gompf and András I. Stipsicz, $4$-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999. MR 1707327, DOI 10.1090/gsm/020
- Bo Ju Jiang, A simple proof that the concordance group of algebraically slice knots is infinitely generated, Proc. Amer. Math. Soc. 83 (1981), no. 1, 189–192. MR 620010, DOI 10.1090/S0002-9939-1981-0620010-7
- Se-Goo Kim, Polynomial splittings of Casson-Gordon invariants, Math. Proc. Cambridge Philos. Soc. 138 (2005), no. 1, 59–78. MR 2127228, DOI 10.1017/S0305004104008023
- Taehee Kim, Filtration of the classical knot concordance group and Casson-Gordon invariants, Math. Proc. Cambridge Philos. Soc. 137 (2004), no. 2, 293–306. MR 2092061, DOI 10.1017/S0305004104007686
- Carl F. Letsche, An obstruction to slicing knots using the eta invariant, Math. Proc. Cambridge Philos. Soc. 128 (2000), no. 2, 301–319. MR 1735303, DOI 10.1017/S0305004199004016
- J. Levine, Invariants of knot cobordism, Invent. Math. 8 (1969), 98–110; addendum, ibid. 8 (1969), 355. MR 253348, DOI 10.1007/BF01404613
- J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229–244. MR 246314, DOI 10.1007/BF02564525
- Charles Livingston, Seifert forms and concordance, Geom. Topol. 6 (2002), 403–408. MR 1928840, DOI 10.2140/gt.2002.6.403
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, vol. 7, Publish or Perish, Inc., Houston, TX, 1990. Corrected reprint of the 1976 original. MR 1277811
- C. T. C. Wall, Surgery on compact manifolds, 2nd ed., Mathematical Surveys and Monographs, vol. 69, American Mathematical Society, Providence, RI, 1999. Edited and with a foreword by A. A. Ranicki. MR 1687388, DOI 10.1090/surv/069
Bibliographic Information
- Se-Goo Kim
- Affiliation: Department of Mathematics and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130–701, Korea
- MR Author ID: 610250
- ORCID: 0000-0002-8874-9408
- Email: sgkim@khu.ac.kr
- Taehee Kim
- Affiliation: Department of Mathematics, Konkuk University, Seoul 143–701, Korea
- MR Author ID: 743933
- Email: tkim@konkuk.ac.kr
- Received by editor(s): May 11, 2007
- Received by editor(s) in revised form: October 8, 2007
- Published electronically: June 4, 2008
- Communicated by: Daniel Ruberman
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 136 (2008), 4079-4087
- MSC (2000): Primary 57M25; Secondary 57N70
- DOI: https://doi.org/10.1090/S0002-9939-08-09372-6
- MathSciNet review: 2425750