Extreme points of lattice intervals in the Minkowski-Rådström-Hörmander lattice
HTML articles powered by AMS MathViewer
- by Jerzy Grzybowski and Ryszard Urbański
- Proc. Amer. Math. Soc. 136 (2008), 3957-3962
- DOI: https://doi.org/10.1090/S0002-9939-08-09376-3
- Published electronically: June 3, 2008
Abstract:
In this paper we characterize extreme points of any symmetric interval in the Minkowski–Rådström–Hörmander lattice $\widetilde {X}$ over any Hausdorff topological vector space $X$ (Theorem 1). Then we prove that the unit ball in the Minkowski–Rådström–Hörmander lattice $\widetilde {X}$ over any normed space $X$, dim$X\geq 2,$ has exactly two extreme points (Theorem 2).References
- Garrett Birkhoff, Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications, Vol. 25, American Mathematical Society, Providence, R.I., 1979. MR 598630
- Frank H. Clarke, Optimization and nonsmooth analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983. A Wiley-Interscience Publication. MR 709590
- Romulus Cristescu, Topological vector spaces, Editura Academiei, Bucharest; Noordhoff International Publishing, Leyden, 1977. Translated from the Romanian by Mihaela Suliciu. MR 0454552
- Gerard Debreu, Integration of correspondences, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 351–372. MR 0228252
- V. F. Demyanov and A. M. Rubinov, An introduction to quasidifferential calculus, Quasidifferentiability and related topics, Nonconvex Optim. Appl., vol. 43, Kluwer Acad. Publ., Dordrecht, 2000, pp. 1–31. MR 1766791, DOI 10.1007/978-1-4757-3137-8_{1}
- L. Drewnowski, Additive and countably additive correspondences, Comment. Math. Prace Mat. 19 (1976), no. 1, 25–54. MR 422564
- Pierre Goossens, Completeness of spaces of closed bounded convex sets, J. Math. Anal. Appl. 115 (1986), no. 1, 192–201. MR 835594, DOI 10.1016/0022-247X(86)90033-8
- J. Grzybowski and R. Urbański, On inclusion and summands of bounded closed convex sets, Acta Math. Hungar. 106 (2005), no. 4, 293–300. MR 2131334, DOI 10.1007/s10474-005-0020-6
- Lars Hörmander, Sur la fonction d’appui des ensembles convexes dans un espace localement convexe, Ark. Mat. 3 (1955), 181–186 (French). MR 68112, DOI 10.1007/BF02589354
- Diethard Pallaschke and Ryszard Urbański, Pairs of compact convex sets, Mathematics and its Applications, vol. 548, Kluwer Academic Publishers, Dordrecht, 2002. Fractional arithmetic with convex sets. MR 1961230, DOI 10.1007/978-94-015-9920-7
- Prakash Prem and Murat R. Sertel, Hyperspaces of topological vector spaces: their embedding in topological vector spaces, Proc. Amer. Math. Soc. 61 (1976), no. 1, 163–168 (1977). MR 425881, DOI 10.1090/S0002-9939-1976-0425881-3
- Hans Rådström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165–169. MR 45938, DOI 10.1090/S0002-9939-1952-0045938-2
- Stefan Scholtes, Minimal pairs of convex bodies in two dimensions, Mathematika 39 (1992), no. 2, 267–273. MR 1203283, DOI 10.1112/S002557930001500X
- R. Urbański, A generalization of the Minkowski-Rȧdström-Hörmander theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), no. 9, 709–715 (English, with Russian summary). MR 442646
Bibliographic Information
- Jerzy Grzybowski
- Affiliation: Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland
- Email: jgrz@amu.edu.pl
- Ryszard Urbański
- Affiliation: Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland
- Email: rich@amu.edu.pl
- Received by editor(s): March 13, 2007
- Received by editor(s) in revised form: October 4, 2007
- Published electronically: June 3, 2008
- Communicated by: N. Tomczak-Jaegermann
- © Copyright 2008 Jerzy Grzybowski and Ryszard Urbański
- Journal: Proc. Amer. Math. Soc. 136 (2008), 3957-3962
- MSC (2000): Primary 46B20, 52A05, 54B20
- DOI: https://doi.org/10.1090/S0002-9939-08-09376-3
- MathSciNet review: 2425736