Characterizing indecomposable plane continua from their complements
HTML articles powered by AMS MathViewer
- by Clinton P. Curry, John C. Mayer and E. D. Tymchatyn PDF
- Proc. Amer. Math. Soc. 136 (2008), 4045-4055 Request permission
Abstract:
We show that a plane continuum $X$ is indecomposable iff $X$ has a sequence $(U_n)_{n=1}^\infty$ of not necessarily distinct complementary domains satisfying the double-pass condition: for any sequence $(A_n)_{n=1}^\infty$ of open arcs, with $A_n \subset U_n$ and $\overline {A_n}\setminus A_n \subset \partial U_n$, there is a sequence of shadows $(S_n)_{n=1}^\infty$, where each $S_n$ is a shadow of $A_n$, such that $\lim S_n=X$. Such an open arc divides $U_n$ into disjoint subdomains $V_{n,1}$ and $V_{n,2}$, and a shadow (of $A_n$) is one of the sets $\partial V_{n,i}\cap \partial U$.References
- Paul Blanchard, Robert L. Devaney, Daniel M. Look, Pradipta Seal, and Yakov Shapiro, Sierpinski-curve Julia sets and singular perturbations of complex polynomials, Ergodic Theory Dynam. Systems 25 (2005), no. 4, 1047–1055. MR 2158396, DOI 10.1017/S0143385704000380
- C. E. Burgess, Continua and their complementary domains in the plane, Duke Math. J. 18 (1951), 901–917. MR 44828, DOI 10.1215/S0012-7094-51-01884-4
- Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383, DOI 10.1007/978-1-4612-4364-9
- Douglas K. Childers, John C. Mayer, and James T. Rogers Jr., Indecomposable continua and the Julia sets of polynomials. II, Topology Appl. 153 (2006), no. 10, 1593–1602. MR 2216123, DOI 10.1016/j.topol.2004.04.013
- Douglas K. Childers, John C. Mayer, H. Murat Tuncali, and E. D. Tymchatyn, Indecomposable continua and the Julia sets of rational maps, Complex dynamics, Contemp. Math., vol. 396, Amer. Math. Soc., Providence, RI, 2006, pp. 1–20. MR 2209083, DOI 10.1090/conm/396/07390
- W. T. Ingram and Howard Cook, A characterization of indecomposable compact continua, Topology Conference (Arizona State Univ., Tempe, Ariz., 1967) Arizona State Univ., Tempe, Ariz., 1968, pp. 168–169. MR 0253298
- Robert L. Devaney and Xavier Jarque, Indecomposable continua in exponential dynamics, Conform. Geom. Dyn. 6 (2002), 1–12. MR 1882085, DOI 10.1090/S1088-4173-02-00080-2
- Robert L. Devaney, Cantor and Sierpinski, Julia and Fatou: complex topology meets complex dynamics, Notices Amer. Math. Soc. 51 (2004), no. 1, 9–15. MR 2022671
- Theodore W. Gamelin, Complex analysis, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 2001. MR 1830078, DOI 10.1007/978-0-387-21607-2
- John G. Hocking and Gail S. Young, Topology, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1961. MR 0125557
- J. Krasinkiewicz, On homeomorphisms of the Sierpiński curve, Prace Mat. 12 (1969), 255–257. MR 0247618
- J. Krasinkiewicz, On internal composants of indecomposable plane continua, Fund. Math. 84 (1974), no. 3, 255–263. MR 339101, DOI 10.4064/fm-84-3-255-263
- K. Kuratowski, Topology. Vol. II, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1968. New edition, revised and augmented; Translated from the French by A. Kirkor. MR 0259835
- John C. Mayer and James T. Rogers Jr., Indecomposable continua and the Julia sets of polynomials, Proc. Amer. Math. Soc. 117 (1993), no. 3, 795–802. MR 1145423, DOI 10.1090/S0002-9939-1993-1145423-7
- John Milnor, Dynamics in one complex variable, Friedr. Vieweg & Sohn, Braunschweig, 1999. Introductory lectures. MR 1721240
- John Milnor, On rational maps with two critical points, Experiment. Math. 9 (2000), no. 4, 481–522. MR 1806289, DOI 10.1080/10586458.2000.10504657
- John Milnor, Geometry and dynamics of quadratic rational maps, Experiment. Math. 2 (1993), no. 1, 37–83. With an appendix by the author and Lei Tan. MR 1246482, DOI 10.1080/10586458.1993.10504267
- Sam B. Nadler Jr., Continuum theory, Monographs and Textbooks in Pure and Applied Mathematics, vol. 158, Marcel Dekker, Inc., New York, 1992. An introduction. MR 1192552
- N. E. Rutt. Prime ends and indecomposability. Bull. AMS. 41:265–273, 1935.
- A. H. Stone, Incidence relations in unicoherent spaces, Trans. Amer. Math. Soc. 65 (1949), 427–447. MR 30743, DOI 10.1090/S0002-9947-1949-0030743-8
- A. H. Stone, Incidence relations in multicoherent spaces. I, Trans. Amer. Math. Soc. 66 (1949), 389–406. MR 30744, DOI 10.1090/S0002-9947-1949-0030744-X
- Yeshun Sun and Chung-Chun Yang, Buried points and Lakes of Wada continua, Discrete Contin. Dyn. Syst. 9 (2003), no. 2, 379–382. MR 1952380, DOI 10.3934/dcds.2003.9.379
- H. D. Ursell and L. C. Young, Remarks on the theory of prime ends, Mem. Amer. Math. Soc. 3 (1951), 29. MR 42110
Additional Information
- Clinton P. Curry
- Affiliation: Department of Mathematics, University of Alabama at Birmingham, Birmingham, Alabama 35294-1170
- Email: clintonc@uab.edu
- John C. Mayer
- Affiliation: Department of Mathematics, University of Alabama at Birmingham, Birmingham, Alabama 35294-1170
- Email: mayer@math.uab.edu
- E. D. Tymchatyn
- Affiliation: Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 0W0
- MR Author ID: 175580
- Email: tymchat@math.usask.ca
- Received by editor(s): September 4, 2007
- Published electronically: June 26, 2008
- Additional Notes: The third author was supported in part by NSERC 0GP005616. We thank the Department of Mathematics and Computer Science at Nipissing University, North Bay, Ontario, for the opportunity to work on this paper in pleasant surroundings at their annual topology workshop.
- Communicated by: Alexander N. Dranishnikov
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 136 (2008), 4045-4055
- MSC (2000): Primary 54F15; Secondary 37F20
- DOI: https://doi.org/10.1090/S0002-9939-08-09508-7
- MathSciNet review: 2425746