On sequences $(a_n \xi )_{n \ge 1}$ converging modulo $1$
HTML articles powered by AMS MathViewer
- by Yann Bugeaud
- Proc. Amer. Math. Soc. 137 (2009), 2609-2612
- DOI: https://doi.org/10.1090/S0002-9939-09-09822-0
- Published electronically: February 4, 2009
- PDF | Request permission
Abstract:
We prove that, for any sequence of positive real numbers $(g_n)_{n \ge 1}$ satisfying $g_n \ge 1$ for $n \ge 1$ and $\lim _{n \to + \infty } g_n = + \infty$, for any real number $\theta$ in $[0, 1]$ and any irrational real number $\xi$, there exists an increasing sequence of positive integers $(a_n)_{n \ge 1}$ satisfying $a_n \le n g_n$ for $n \ge 1$ and such that the sequence of fractional parts $(\{a_n \xi \})_{n \ge 1}$ tends to $\theta$ as $n$ tends to infinity. This result is best possible in the sense that the condition $\lim _{n \to + \infty } g_n = + \infty$ cannot be weakened, as recently proved by Dubickas.References
- A. Dubickas, On the limit points of $(a_n \xi )_{n=1}^{\infty }$ mod $1$ for slowly increasing integer sequences $(a_n)_{n=1}^{\infty }$, Proc. Amer. Math. Soc. 137 (2009), 449–456.
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR 568909
- Oto Strauch and Štefan Porubský, Distribution of sequences: a sampler, Schriftenreihe der Slowakischen Akademie der Wissenschaften [Series of the Slovak Academy of Sciences], vol. 1, Peter Lang, Frankfurt am Main, 2005. MR 2290224
- Hermann Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), no. 3, 313–352 (German). MR 1511862, DOI 10.1007/BF01475864
Bibliographic Information
- Yann Bugeaud
- Affiliation: U.F.R. de Mathématiques, Université Louis Pasteur, 7, rue René Descartes, 67084 Strasbourg, France
- Email: bugeaud@math.u-strasbg.fr
- Received by editor(s): October 6, 2008
- Received by editor(s) in revised form: November 5, 2008
- Published electronically: February 4, 2009
- Communicated by: Ken Ono
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 2609-2612
- MSC (2000): Primary 11J71, 11K06
- DOI: https://doi.org/10.1090/S0002-9939-09-09822-0
- MathSciNet review: 2497472