On the $L_p$ norm of the Rademacher projection and related inequalities
HTML articles powered by AMS MathViewer
- by Lesław Skrzypek
- Proc. Amer. Math. Soc. 137 (2009), 2661-2669
- DOI: https://doi.org/10.1090/S0002-9939-09-09875-X
- Published electronically: February 25, 2009
- PDF | Request permission
Abstract:
The purpose of this paper is to find the exact norm of the Rademacher projection onto $\{r_1,r_2,r_3\}.$ Namely, we prove \[ \Vert R_3\Vert _p=\frac {(3^{p/q}+1)^{1/p}(3^{q/p}+1)^{1/q}}{4}. \] The same techniques also give the relative projection constant of $\ker \{1,...,1\}$ in $\ell _p^n,$ that is, \[ \lambda (\ker \{1,...,1\},\ell _p^n)=\frac {((n-1)^{p/q}+1)^{1/p}((n-1)^{q/p}+1)^{1/q}}{n}, \] for $n=2,3,4$. We discuss the relation of the above inequalities to the famous Khintchine and Clarkson inequalities. We conclude the paper by stating some conjectures that involve the geometry of the unit ball of $\ell _p^n.$References
- A. G. Aksoy and B. L. Chalmers, Minimal numerical-radius extensions of operators, Proc. Amer. Math. Soc. 135 (2007), no. 4, 1039–1050. MR 2262904, DOI 10.1090/S0002-9939-06-08609-6
- D. L. Berman, On the impossibility of constructing a linear polynomial operator furnishing an approximation of the order of the best approximation, Dokl. Akad. Nauk SSSR 120 (1958), 1175–1177 (Russian). MR 0098941
- J. Blatter and E. W. Cheney, Minimal projections on hyperplanes in sequence spaces, Ann. Mat. Pura Appl. (4) 101 (1974), 215–227. MR 358179, DOI 10.1007/BF02417105
- B. L. Chalmers and F. T. Metcalf, Critical points of the $n$-dimensional Khintchine ratio and Rademacher projection norms, Approximation theory VI, Vol. I (College Station, TX, 1989) Academic Press, Boston, MA, 1989, pp. 125–128. MR 1090980, DOI 10.1007/978-3-662-10882-6_{1}2
- B. L. Chalmers and F. T. Metcalf, The determination of minimal projections and extensions in $L^1$, Trans. Amer. Math. Soc. 329 (1992), no. 1, 289–305. MR 1034660, DOI 10.1090/S0002-9947-1992-1034660-1
- B. L. Chalmers and F. T. Metcalf, A characterization and equations for minimal projections and extensions, J. Operator Theory 32 (1994), no. 1, 31–46. MR 1332442
- E. W. Cheney, C. R. Hobby, P. D. Morris, F. Schurer, and D. E. Wulbert, On the minimal property of the Fourier projection, Trans. Amer. Math. Soc. 143 (1969), 249–258. MR 256044, DOI 10.1090/S0002-9947-1969-0256044-3
- James A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414. MR 1501880, DOI 10.1090/S0002-9947-1936-1501880-4
- T. Figiel, T. Iwaniec, and A. Pełczyński, Computing norms and critical exponents of some operators in $L^p$-spaces, Studia Math. 79 (1984), no. 3, 227–274. MR 781720, DOI 10.4064/sm-79-3-227-274
- Uffe Haagerup, The best constants in the Khintchine inequality, Studia Math. 70 (1981), no. 3, 231–283 (1982). MR 654838, DOI 10.4064/sm-70-3-231-283
- J. R. Isbell and Z. Semadeni, Projection constants and spaces of continuous functions, Trans. Amer. Math. Soc. 107 (1963), 38–48. MR 146649, DOI 10.1090/S0002-9947-1963-0146649-7
- Mikio Kato, Generalized Clarkson’s inequalities and the norms of the Littlewood matrices, Math. Nachr. 114 (1983), 163–170. MR 745054, DOI 10.1002/mana.19831140111
- Ryszard Komorowski, On the best possible constants in the Khintchine inequality for $p\geq 3$, Bull. London Math. Soc. 20 (1988), no. 1, 73–75. MR 916079, DOI 10.1112/blms/20.1.73
- Pol V. Lambert, On the minimum norm property of the Fourier projection in $L^{1}$-spaces, Bull. Soc. Math. Belg. 21 (1969), 370–391. MR 273293
- RafałLatała, Estimation of moments of sums of independent real random variables, Ann. Probab. 25 (1997), no. 3, 1502–1513. MR 1457628, DOI 10.1214/aop/1024404522
- Grzegorz Lewicki and Lesław Skrzypek, Chalmers-Metcalf operator and uniqueness of minimal projections, J. Approx. Theory 148 (2007), no. 1, 71–91. MR 2356576, DOI 10.1016/j.jat.2006.10.008
- Grzegorz Lewicki and Lesław Skrzypek, On properties of Chalmers-Metcalf operators, Banach spaces and their applications in analysis, Walter de Gruyter, Berlin, 2007, pp. 375–389. MR 2374721
- S. M. Lozinskiĭ, On a class of linear operations, Doklady Akad. Nauk SSSR (N.S.) 61 (1948), 193–196 (Russian). MR 0026699
- Lech Maligranda and Lars Erik Persson, On Clarkson’s inequalities and interpolation, Math. Nachr. 155 (1992), 187–197. MR 1231264, DOI 10.1002/mana.19921550114
- F. T. Metcalf, An integral identity for the Rademacher functions, J. Math. Anal. Appl. 189 (1995), no. 2, 393–408. MR 1312052, DOI 10.1006/jmaa.1995.1026
- P. D. Morris and E. W. Cheney, On the existence and characterization of minimal projections, J. Reine Angew. Math. 270 (1974), 61–76. MR 358188, DOI 10.1515/crll.1974.270.61
- Włodzimierz Odyniec and Grzegorz Lewicki, Minimal projections in Banach spaces, Lecture Notes in Mathematics, vol. 1449, Springer-Verlag, Berlin, 1990. Problems of existence and uniqueness and their application. MR 1079547, DOI 10.1007/BFb0094527
- Gilles Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics, vol. 94, Cambridge University Press, Cambridge, 1989. MR 1036275, DOI 10.1017/CBO9780511662454
- B. Shekhtman and L. Skrzypek, On the non-uniqueness of minimal projection in $L_p$ spaces, J. Approx. Theory. Article in press. doi:10.1016/j.jat.2008.08.006
- Boris Shekhtman and Lesław Skrzypek, Norming points and unique minimality of orthogonal projections, Abstr. Appl. Anal. , posted on (2006), Art. ID 42305, 17. MR 2211664, DOI 10.1155/AAA/2006/42305
- L. Skrzypek, On the non-uniqueness of minimal projections in $L_1$, preprint.
Bibliographic Information
- Lesław Skrzypek
- Affiliation: Department of Mathematics, University of South Florida, 4202 E. Fowler Avenue, PHY 114, Tampa, Florida 33620-5700
- Email: skrzypek@math.usf.edu
- Received by editor(s): October 9, 2008
- Published electronically: February 25, 2009
- Communicated by: Nigel J. Kalton
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 2661-2669
- MSC (2000): Primary 41A65, 41A44, 42C10
- DOI: https://doi.org/10.1090/S0002-9939-09-09875-X
- MathSciNet review: 2497479