Stability criterion for convolution-dominated infinite matrices
HTML articles powered by AMS MathViewer
- by Qiyu Sun
- Proc. Amer. Math. Soc. 138 (2010), 3933-3943
- DOI: https://doi.org/10.1090/S0002-9939-2010-10319-2
- Published electronically: July 13, 2010
- PDF | Request permission
Abstract:
Let $\ell ^p$ be the space of all $p$-summable sequences on $\mathbb {Z}$. An infinite matrix is said to have $\ell ^p$-stability if it is bounded and has bounded inverse on $\ell ^p$. In this paper, a practical criterion is established for the $\ell ^p$-stability of convolution-dominated infinite matrices.References
- Akram Aldroubi and Karlheinz Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Rev. 43 (2001), no. 4, 585–620. MR 1882684, DOI 10.1137/S0036144501386986
- Akram Aldroubi, Anatoly Baskakov, and Ilya Krishtal, Slanted matrices, Banach frames, and sampling, J. Funct. Anal. 255 (2008), no. 7, 1667–1691. MR 2442078, DOI 10.1016/j.jfa.2008.06.024
- Radu Balan, Peter G. Casazza, Christopher Heil, and Zeph Landau, Density, overcompleteness, and localization of frames. I. Theory, J. Fourier Anal. Appl. 12 (2006), no. 2, 105–143. MR 2224392, DOI 10.1007/s00041-006-6022-0
- Bruce A. Barnes, When is the spectrum of a convolution operator on $L^p$ independent of $p$?, Proc. Edinburgh Math. Soc. (2) 33 (1990), no. 2, 327–332. MR 1057760, DOI 10.1017/S0013091500018241
- A. G. Baskakov, Wiener’s theorem and asymptotic estimates for elements of inverse matrices, Funktsional. Anal. i Prilozhen. 24 (1990), no. 3, 64–65 (Russian); English transl., Funct. Anal. Appl. 24 (1990), no. 3, 222–224 (1991). MR 1082033, DOI 10.1007/BF01077964
- Charles K. Chui, Wenjie He, and Joachim Stöckler, Nonstationary tight wavelet frames. I. Bounded intervals, Appl. Comput. Harmon. Anal. 17 (2004), no. 2, 141–197. MR 2082157, DOI 10.1016/j.acha.2004.02.004
- Alain Connes, $C^{\ast }$ algèbres et géométrie différentielle, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 13, A599–A604 (French, with English summary). MR 572645
- Carl de Boor, A bound on the $L_{\infty }$-norm of $L_{2}$-approximation by splines in terms of a global mesh ratio, Math. Comp. 30 (1976), no. 136, 765–771. MR 425432, DOI 10.1090/S0025-5718-1976-0425432-1
- Stephen Demko, Inverses of band matrices and local convergence of spline projections, SIAM J. Numer. Anal. 14 (1977), no. 4, 616–619. MR 455281, DOI 10.1137/0714041
- Gero Fendler, Karlheinz Gröchenig, and Michael Leinert, Convolution-dominated operators on discrete groups, Integral Equations Operator Theory 61 (2008), no. 4, 493–509. MR 2434338, DOI 10.1007/s00020-008-1604-7
- I. Gelfand, D. Raikov, and G. Shilov, Commutative normed rings, Chelsea Publishing Co., New York, 1964. Translated from the Russian, with a supplementary chapter. MR 0205105
- I. Gohberg, M. A. Kaashoek, and H. J. Woerdeman, The band method for positive and strictly contractive extension problems: an alternative version and new applications, Integral Equations Operator Theory 12 (1989), no. 3, 343–382. MR 998278, DOI 10.1007/BF01235737
- Karlheinz Gröchenig, Time-frequency analysis of Sjöstrand’s class, Rev. Mat. Iberoam. 22 (2006), no. 2, 703–724. MR 2294795, DOI 10.4171/RMI/471
- Karlheinz Gröchenig and Michael Leinert, Wiener’s lemma for twisted convolution and Gabor frames, J. Amer. Math. Soc. 17 (2004), no. 1, 1–18. MR 2015328, DOI 10.1090/S0894-0347-03-00444-2
- Karlheinz Gröchenig and Michael Leinert, Symmetry and inverse-closedness of matrix algebras and functional calculus for infinite matrices, Trans. Amer. Math. Soc. 358 (2006), no. 6, 2695–2711. MR 2204052, DOI 10.1090/S0002-9947-06-03841-4
- Karlheinz Gröchenig and Thomas Strohmer, Pseudodifferential operators on locally compact abelian groups and Sjöstrand’s symbol class, J. Reine Angew. Math. 613 (2007), 121–146. MR 2377132, DOI 10.1515/CRELLE.2007.094
- A. Hulanicki, On the spectrum of convolution operators on groups with polynomial growth, Invent. Math. 17 (1972), 135–142. MR 323951, DOI 10.1007/BF01418936
- S. Jaffard, Propriétés des matrices “bien localisées” près de leur diagonale et quelques applications, Ann. Inst. H. Poincaré C Anal. Non Linéaire 7 (1990), no. 5, 461–476 (French, with English summary). MR 1138533, DOI 10.1016/S0294-1449(16)30287-6
- Rong Qing Jia and Charles A. Micchelli, Using the refinement equations for the construction of pre-wavelets. II. Powers of two, Curves and surfaces (Chamonix-Mont-Blanc, 1990) Academic Press, Boston, MA, 1991, pp. 209–246. MR 1123739
- V. G. Kurbatov, Algebras of difference and integral operators, Funktsional. Anal. i Prilozhen. 24 (1990), no. 2, 87–88 (Russian); English transl., Funct. Anal. Appl. 24 (1990), no. 2, 156–158. MR 1069415, DOI 10.1007/BF01077713
- M. A. Naĭmark, Normed algebras, 3rd ed., Wolters-Noordhoff Series of Monographs and Textbooks on Pure and Applied Mathematics, Wolters-Noordhoff Publishing, Groningen, 1972. Translated from the second Russian edition by Leo F. Boron. MR 0438123
- T. Pytlik, On the spectral radius of elements in group algebras, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 899–902 (English, with Russian summary). MR 328476
- Chang Eon Shin and Qiyu Sun, Stability of localized operators, J. Funct. Anal. 256 (2009), no. 8, 2417–2439. MR 2502521, DOI 10.1016/j.jfa.2008.09.011
- Johannes Sjöstrand, An algebra of pseudodifferential operators, Math. Res. Lett. 1 (1994), no. 2, 185–192. MR 1266757, DOI 10.4310/MRL.1994.v1.n2.a6
- J. Sjöstrand, Wiener type algebras of pseudodifferential operators, Séminaire sur les Équations aux Dérivées Partielles, 1994–1995, École Polytech., Palaiseau, 1995, pp. Exp. No. IV, 21. MR 1362552
- Qiyu Sun, Nonuniform average sampling and reconstruction of signals with finite rate of innovation, SIAM J. Math. Anal. 38 (2006/07), no. 5, 1389–1422. MR 2286012, DOI 10.1137/05063444X
- Qiyu Sun, Wiener’s lemma for infinite matrices, Trans. Amer. Math. Soc. 359 (2007), no. 7, 3099–3123. MR 2299448, DOI 10.1090/S0002-9947-07-04303-6
- R. Tessera, Finding left inverse for operators on $\ell ^p({\mathbb Z}^d)$ with polynomial decay, preprint, 2008. arXiv:0801.1532
- Norbert Wiener, Tauberian theorems, Ann. of Math. (2) 33 (1932), no. 1, 1–100. MR 1503035, DOI 10.2307/1968102
Bibliographic Information
- Qiyu Sun
- Affiliation: Department of Mathematics, University of Central Florida, Orlando, Florida 32816
- Email: qsun@mail.ucf.edu
- Received by editor(s): October 14, 2008
- Received by editor(s) in revised form: November 30, 2009
- Published electronically: July 13, 2010
- Communicated by: Marius Junge
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 3933-3943
- MSC (2010): Primary 47B35; Secondary 40E05, 65F05, 42C40, 47G30, 94A20
- DOI: https://doi.org/10.1090/S0002-9939-2010-10319-2
- MathSciNet review: 2679615