Effective nonvanishing of canonical Hecke $L$-functions
HTML articles powered by AMS MathViewer
- by George Boxer and Peter Diao
- Proc. Amer. Math. Soc. 138 (2010), 3891-3897
- DOI: https://doi.org/10.1090/S0002-9939-2010-10430-6
- Published electronically: June 4, 2010
- PDF | Request permission
Abstract:
Motivated by work of Gross, Rohrlich, and more recently Kim, Masri, and Yang, we investigate the nonvanishing of central values of $L$-functions of “canonical” weight $2k-1$ Hecke characters for $\mathbb {Q}(\sqrt {-p})$, where $3 < p \equiv 3 \pmod 4$ is prime. Using the work of Rodriguez-Villegas and Zagier, we show that there are nonvanishing central values provided that $p \geq 6.5(k-1)^2$ and $(-1)^{k+1} \left (\frac {2}{p}\right ) = 1$. Moreover, we show that the number of such $\psi \in \Psi _{p,k}$ satisfies \begin{equation*} \#\{\psi \in \Psi _{p,k}\mid L(\psi ,k)\not =0\}\geq \frac {h(-p)}{\#\operatorname {Cl}(K)[2k-1]}. \end{equation*}References
- W. Duke, J. B. Friedlander, and H. Iwaniec, Bounds for automorphic $L$-functions. II, Invent. Math. 115 (1994), no. 2, 219–239. MR 1258904, DOI 10.1007/BF01231759
- Benedict H. Gross, Arithmetic on elliptic curves with complex multiplication, Lecture Notes in Mathematics, vol. 776, Springer, Berlin, 1980. With an appendix by B. Mazur. MR 563921
- B. D. Kim, R. Masri, and Tonghai Yang, Nonvanishing of Hecke $L$–functions and the Bloch-Kato conjecture, preprint.
- Ilia Krasikov, Nonnegative quadratic forms and bounds on orthogonal polynomials, J. Approx. Theory 111 (2001), no. 1, 31–49. MR 1840019, DOI 10.1006/jath.2001.3570
- Chunlei Liu and Lanju Xu, The vanishing order of certain Hecke $L$-functions of imaginary quadratic fields, J. Number Theory 108 (2004), no. 1, 76–89. MR 2078658, DOI 10.1016/j.jnt.2004.04.007
- Riad Masri, Asymptotics for sums of central values of canonical Hecke $L$-series, Int. Math. Res. Not. IMRN 19 (2007), Art. ID rnm065, 27. MR 2359540, DOI 10.1093/imrn/rnm065
- Riad Masri, Quantitative nonvanishing of $L$-series associated to canonical Hecke characters, Int. Math. Res. Not. IMRN 19 (2007), Art. ID rnm070, 16. MR 2359543, DOI 10.1093/imrn/rnm070
- Philippe Michel and Akshay Venkatesh, Heegner points and non-vanishing of Rankin/Selberg $L$-functions, Analytic number theory, Clay Math. Proc., vol. 7, Amer. Math. Soc., Providence, RI, 2007, pp. 169–183. MR 2362200
- Stephen D. Miller and Tonghai Yang, Non-vanishing of the central derivative of canonical Hecke $L$-functions, Math. Res. Lett. 7 (2000), no. 2-3, 263–277. MR 1764321, DOI 10.4310/MRL.2000.v7.n3.a2
- Hugh L. Montgomery and David E. Rohrlich, On the $L$-functions of canonical Hecke characters of imaginary quadratic fields. II, Duke Math. J. 49 (1982), no. 4, 937–942. MR 683009
- Fernando Rodríguez Villegas, Square root formulas for central values of Hecke $L$-series. II, Duke Math. J. 72 (1993), no. 2, 431–440. MR 1248679, DOI 10.1215/S0012-7094-93-07215-8
- Fernando Rodriguez Villegas and Tonghai Yang, Central values of Hecke $L$-functions of CM number fields, Duke Math. J. 98 (1999), no. 3, 541–564. MR 1695801, DOI 10.1215/S0012-7094-99-09817-4
- Fernando Rodriguez Villegas and Don Zagier, Square roots of central values of Hecke $L$-series, Advances in number theory (Kingston, ON, 1991) Oxford Sci. Publ., Oxford Univ. Press, New York, 1993, pp. 81–99. MR 1368412
- David E. Rohrlich, The nonvanishing of certain Hecke $L$-functions at the center of the critical strip, Duke Math. J. 47 (1980), no. 1, 223–232. MR 563377
- David E. Rohrlich, On the $L$-functions of canonical Hecke characters of imaginary quadratic fields, Duke Math. J. 47 (1980), no. 3, 547–557. MR 587165
- David E. Rohrlich, Galois conjugacy of unramified twists of Hecke characters, Duke Math. J. 47 (1980), no. 3, 695–703. MR 587174
- Goro Shimura, On the periods of modular forms, Math. Ann. 229 (1977), no. 3, 211–221. MR 463119, DOI 10.1007/BF01391466
- Tonghai Yang, Nonvanishing of central Hecke $L$-values and rank of certain elliptic curves, Compositio Math. 117 (1999), no. 3, 337–359. MR 1702416, DOI 10.1023/A:1000934108242
Bibliographic Information
- George Boxer
- Affiliation: Frist Center, Princeton University, Mailbox 2704, Princeton, New Jersey 08544
- Peter Diao
- Affiliation: Frist Center, Princeton University, Mailbox 2868, Princeton, New Jersey 08544
- Received by editor(s): November 3, 2009
- Received by editor(s) in revised form: February 4, 2010
- Published electronically: June 4, 2010
- Communicated by: Wen-Ching Winnie Li
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 3891-3897
- MSC (2010): Primary 11M99
- DOI: https://doi.org/10.1090/S0002-9939-2010-10430-6
- MathSciNet review: 2679611