## Effective nonvanishing of canonical Hecke $L$-functions

HTML articles powered by AMS MathViewer

- by George Boxer and Peter Diao
- Proc. Amer. Math. Soc.
**138**(2010), 3891-3897 - DOI: https://doi.org/10.1090/S0002-9939-2010-10430-6
- Published electronically: June 4, 2010
- PDF | Request permission

## Abstract:

Motivated by work of Gross, Rohrlich, and more recently Kim, Masri, and Yang, we investigate the nonvanishing of central values of $L$-functions of “canonical” weight $2k-1$ Hecke characters for $\mathbb {Q}(\sqrt {-p})$, where $3 < p \equiv 3 \pmod 4$ is prime. Using the work of Rodriguez-Villegas and Zagier, we show that there are nonvanishing central values provided that $p \geq 6.5(k-1)^2$ and $(-1)^{k+1} \left (\frac {2}{p}\right ) = 1$. Moreover, we show that the number of such $\psi \in \Psi _{p,k}$ satisfies \begin{equation*} \#\{\psi \in \Psi _{p,k}\mid L(\psi ,k)\not =0\}\geq \frac {h(-p)}{\#\operatorname {Cl}(K)[2k-1]}. \end{equation*}## References

- W. Duke, J. B. Friedlander, and H. Iwaniec,
*Bounds for automorphic $L$-functions. II*, Invent. Math.**115**(1994), no. 2, 219–239. MR**1258904**, DOI 10.1007/BF01231759 - Benedict H. Gross,
*Arithmetic on elliptic curves with complex multiplication*, Lecture Notes in Mathematics, vol. 776, Springer, Berlin, 1980. With an appendix by B. Mazur. MR**563921** - B. D. Kim, R. Masri, and Tonghai Yang,
*Nonvanishing of Hecke $L$–functions and the Bloch-Kato conjecture*, preprint. - Ilia Krasikov,
*Nonnegative quadratic forms and bounds on orthogonal polynomials*, J. Approx. Theory**111**(2001), no. 1, 31–49. MR**1840019**, DOI 10.1006/jath.2001.3570 - Chunlei Liu and Lanju Xu,
*The vanishing order of certain Hecke $L$-functions of imaginary quadratic fields*, J. Number Theory**108**(2004), no. 1, 76–89. MR**2078658**, DOI 10.1016/j.jnt.2004.04.007 - Riad Masri,
*Asymptotics for sums of central values of canonical Hecke $L$-series*, Int. Math. Res. Not. IMRN**19**(2007), Art. ID rnm065, 27. MR**2359540**, DOI 10.1093/imrn/rnm065 - Riad Masri,
*Quantitative nonvanishing of $L$-series associated to canonical Hecke characters*, Int. Math. Res. Not. IMRN**19**(2007), Art. ID rnm070, 16. MR**2359543**, DOI 10.1093/imrn/rnm070 - Philippe Michel and Akshay Venkatesh,
*Heegner points and non-vanishing of Rankin/Selberg $L$-functions*, Analytic number theory, Clay Math. Proc., vol. 7, Amer. Math. Soc., Providence, RI, 2007, pp. 169–183. MR**2362200** - Stephen D. Miller and Tonghai Yang,
*Non-vanishing of the central derivative of canonical Hecke $L$-functions*, Math. Res. Lett.**7**(2000), no. 2-3, 263–277. MR**1764321**, DOI 10.4310/MRL.2000.v7.n3.a2 - Hugh L. Montgomery and David E. Rohrlich,
*On the $L$-functions of canonical Hecke characters of imaginary quadratic fields. II*, Duke Math. J.**49**(1982), no. 4, 937–942. MR**683009** - Fernando Rodríguez Villegas,
*Square root formulas for central values of Hecke $L$-series. II*, Duke Math. J.**72**(1993), no. 2, 431–440. MR**1248679**, DOI 10.1215/S0012-7094-93-07215-8 - Fernando Rodriguez Villegas and Tonghai Yang,
*Central values of Hecke $L$-functions of CM number fields*, Duke Math. J.**98**(1999), no. 3, 541–564. MR**1695801**, DOI 10.1215/S0012-7094-99-09817-4 - Fernando Rodriguez Villegas and Don Zagier,
*Square roots of central values of Hecke $L$-series*, Advances in number theory (Kingston, ON, 1991) Oxford Sci. Publ., Oxford Univ. Press, New York, 1993, pp. 81–99. MR**1368412** - David E. Rohrlich,
*The nonvanishing of certain Hecke $L$-functions at the center of the critical strip*, Duke Math. J.**47**(1980), no. 1, 223–232. MR**563377** - David E. Rohrlich,
*On the $L$-functions of canonical Hecke characters of imaginary quadratic fields*, Duke Math. J.**47**(1980), no. 3, 547–557. MR**587165** - David E. Rohrlich,
*Galois conjugacy of unramified twists of Hecke characters*, Duke Math. J.**47**(1980), no. 3, 695–703. MR**587174** - Goro Shimura,
*On the periods of modular forms*, Math. Ann.**229**(1977), no. 3, 211–221. MR**463119**, DOI 10.1007/BF01391466 - Tonghai Yang,
*Nonvanishing of central Hecke $L$-values and rank of certain elliptic curves*, Compositio Math.**117**(1999), no. 3, 337–359. MR**1702416**, DOI 10.1023/A:1000934108242

## Bibliographic Information

**George Boxer**- Affiliation: Frist Center, Princeton University, Mailbox 2704, Princeton, New Jersey 08544
**Peter Diao**- Affiliation: Frist Center, Princeton University, Mailbox 2868, Princeton, New Jersey 08544
- Received by editor(s): November 3, 2009
- Received by editor(s) in revised form: February 4, 2010
- Published electronically: June 4, 2010
- Communicated by: Wen-Ching Winnie Li
- © Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**138**(2010), 3891-3897 - MSC (2010): Primary 11M99
- DOI: https://doi.org/10.1090/S0002-9939-2010-10430-6
- MathSciNet review: 2679611