Proof of the Alder-Andrews conjecture
HTML articles powered by AMS MathViewer
- by Claudia Alfes, Marie Jameson and Robert J. Lemke Oliver
- Proc. Amer. Math. Soc. 139 (2011), 63-78
- DOI: https://doi.org/10.1090/S0002-9939-2010-10500-2
- Published electronically: July 19, 2010
- PDF | Request permission
Abstract:
Motivated by classical identities of Euler, Schur, and Rogers and Ramanujan, Alder investigated $q_d(n)$ and $Q_d(n),$ the number of partitions of $n$ into $d$-distinct parts and into parts which are $\pm 1 (\operatorname {mod}d+3)$, respectively. He conjectured that $q_d(n) \geq Q_d(n).$ Andrews and Yee proved the conjecture for $d = 2^s-1$ and also for $d \geq 32.$ We complete the proof of Andrews’s refinement of Alder’s conjecture by determining effective asymptotic estimates for these partition functions (correcting and refining earlier work of Meinardus), thereby reducing the conjecture to a finite computation.References
- George E. Andrews, On a partition problem of H. L. Alder, Pacific J. Math. 36 (1971), 279–284. MR 289445
- George E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. MR 0557013
- George E. Andrews and Kimmo Eriksson, Integer partitions, Cambridge University Press, Cambridge, 2004. MR 2122332, DOI 10.1017/CBO9781139167239
- Tom M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR 0434929
- K. Bringmann and K. Ono. Coefficients of harmonic Maass forms, Proceedings of the 2008 University of Florida Conference on Partitions, $q$-series, and modular forms, accepted for publication.
- Günter Meinardus, Asymptotische Aussagen über Partitionen, Math. Z. 59 (1954), 388–398 (German). MR 62781, DOI 10.1007/BF01180268
- Günter Meinardus, Über Partitionen mit Differenzenbedingungen, Math. Z. 61 (1954), 289–302 (German). MR 68570, DOI 10.1007/BF01181347
- V. V. Subrahmanyasastri, Partitions with congruence conditions, J. Indian Math. Soc. (N.S.) 36 (1972), 177–194 (1973). MR 325560
- Ae Ja Yee, Partitions with difference conditions and Alder’s conjecture, Proc. Natl. Acad. Sci. USA 101 (2004), no. 47, 16417–16418. MR 2114815, DOI 10.1073/pnas.0406971101
- Ae Ja Yee, Alder’s conjecture, J. Reine Angew. Math. 616 (2008), 67–88. MR 2369487, DOI 10.1515/CRELLE.2008.018
Bibliographic Information
- Claudia Alfes
- Affiliation: Lehrstuhl A für Mathematik, RWTH Aachen, Templergraben 64, D-52062 Aachen, Germany
- Address at time of publication: Fachbereich Mathematik, Technische Universität Darmstadt, Schlossegartenstrasse 7, D-64289 Darmstadt, Germany
- Email: claudia.alfes@matha.rwth-aachen.de
- Marie Jameson
- Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
- Address at time of publication: Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322
- MR Author ID: 913196
- ORCID: 0000-0003-0879-2826
- Email: marie.jameson@gmail.com
- Robert J. Lemke Oliver
- Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
- Address at time of publication: Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322
- MR Author ID: 894148
- Email: lemkeoliver@gmail.com
- Received by editor(s): March 10, 2010
- Published electronically: July 19, 2010
- Communicated by: Kathrin Bringmann
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 139 (2011), 63-78
- MSC (2010): Primary 11P82, 11P84
- DOI: https://doi.org/10.1090/S0002-9939-2010-10500-2
- MathSciNet review: 2729071