Real quadratic function fields of Richaud-Degert type with ideal class number one
HTML articles powered by AMS MathViewer
- by Sunghan Bae
- Proc. Amer. Math. Soc. 140 (2012), 403-414
- DOI: https://doi.org/10.1090/S0002-9939-2011-10910-9
- Published electronically: June 7, 2011
- PDF | Request permission
Abstract:
We determine all real quadratic function fields of Richaud-Degert type with ideal class number one.References
- E. Artin, Quadratische Körper im Gebiete der höheren Kongruenzen. I, Math. Z. 19 (1924), no. 1, 153–206 (German). MR 1544651, DOI 10.1007/BF01181074
- Keqin Feng and Weiqun Hu, On real quadratic function fields of Chowla type with ideal class number one, Proc. Amer. Math. Soc. 127 (1999), no. 5, 1301–1307. MR 1622805, DOI 10.1090/S0002-9939-99-05004-2
- Christian Friesen, Continued fractions and real quadratic function fields, ProQuest LLC, Ann Arbor, MI, 1989. Thesis (Ph.D.)–Brown University. MR 2637664
- Christian Friesen, Class number divisibility in real quadratic function fields, Canad. Math. Bull. 35 (1992), no. 3, 361–370. MR 1184013, DOI 10.4153/CMB-1992-048-5
- Cristian D. González, Class numbers of quadratic function fields and continued fractions, J. Number Theory 40 (1992), no. 1, 38–59. MR 1145853, DOI 10.1016/0022-314X(92)90027-M
- Hasse, H., Theorie der relativ-zyklischen algebrischen Funktionenkörper, insbesondere bei endlichem Konstantenkörper, J. Reine Angew. Math. 172 (1934), 37-54.
- Su Hu and Yan Li, The genus fields of Artin-Schreier extensions, Finite Fields Appl. 16 (2010), no. 4, 255–264. MR 2646336, DOI 10.1016/j.ffa.2010.03.004
- R. A. Mollin, Class number two for real quadratic fields of Richaud-Degert type, Serdica Math. J. 35 (2009), no. 3, 287–300. MR 2567180
- R. A. Mollin and H. C. Williams, Solution of the class number one problem for real quadratic fields of extended Richaud-Degert type (with one possible exception), Number theory (Banff, AB, 1988) de Gruyter, Berlin, 1990, pp. 417–425. MR 1106676
- Ono, T., Arithmetic of algebraic groups and its applications, St. Paul’s International; Exchange Series Occasional Papers VI, St. Paul’s Univ., Tokyo, 1986.
- Ryuji Sasaki, On a lower bound for the class number of an imaginary quadratic field, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), no. 1, 37–39. MR 839802
- Ryuji Sasaki, Generalized Ono invariant and Rabinovitch’s theorem for real quadratic fields, Nagoya Math. J. 109 (1988), 117–124. MR 931955, DOI 10.1017/S0027763000002804
- Stein, A., Introduction to continued fraction expansions in real quadratic function fields, available at http://www.cacr.math.uwaterloo.ca/techreports/1999/corr99-16.ps.
- Henning Stichtenoth, Algebraic function fields and codes, Universitext, Springer-Verlag, Berlin, 1993. MR 1251961
- Xianke Zhang and Kunpeng Wang, Lower bound for ideal class numbers of real quadratic function fields, Tsinghua Sci. Technol. 5 (2000), no. 4, 370–371. MR 1799337
- Xianke Zhang and Kunpeng Wang, Ideal class groups and subgroups of real quadratic function fields, Tsinghua Sci. Technol. 5 (2000), no. 4, 372–373. MR 1799338
- Kun Peng Wang and Xian Ke Zhang, Bounds of the ideal class numbers of real quadratic function fields, Acta Math. Sin. (Engl. Ser.) 20 (2004), no. 1, 169–174. MR 2056567, DOI 10.1007/s10114-003-0284-0
- Robert J. Zuccherato, The continued fraction algorithm and regulator for quadratic function fields of characteristic $2$, J. Algebra 190 (1997), no. 2, 563–587. MR 1441964, DOI 10.1006/jabr.1996.6985
Bibliographic Information
- Sunghan Bae
- Affiliation: Department of Mathematics, Korea Advanced Institute of Science and Technology, Taejon 305-701, Republic of Korea
- Email: shbae@kaist.ac.kr
- Received by editor(s): August 19, 2010
- Received by editor(s) in revised form: November 22, 2010
- Published electronically: June 7, 2011
- Additional Notes: This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (2009-0063182)
- Communicated by: Matthew A. Papanikolas
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 403-414
- MSC (2010): Primary 11R11, 11R29, 11R58
- DOI: https://doi.org/10.1090/S0002-9939-2011-10910-9
- MathSciNet review: 2846310