Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

by Zhi-Wei Sun
Proc. Amer. Math. Soc. 140 (2012), 415-428 Request permission

Abstract:

Harmonic numbers $H_{k}=\sum _{0<j\leqslant k}1/j\ (k=0,1,2,\ldots )$ play important roles in mathematics. In this paper we investigate their arithmetic properties and obtain various basic congruences. Let $p>3$ be a prime. We show that \begin{equation*} \sum _{k=1}^{p-1}\frac {H_{k}}{k2^{k}}\equiv 0\ (\mathrm {mod} \ p),\ \sum _{k=1}^{p-1}H_{k}^{2} \equiv 2p-2\ (\mathrm {mod} \ p^{2}), \ \sum _{k=1}^{p-1}H_{k}^{3}\equiv 6\ (\mathrm {mod} \ p),\end{equation*} and \begin{equation*} \sum _{k=1}^{p-1}\frac {H_{k}^{2}}{k^{2}}\equiv 0\ (\mathrm {mod} \ p)\qquad \text {provided }\ p>5. \end{equation*} (In contrast, it is known that $\sum _{k=1}^{\infty }H_{k}/(k2^{k})=\pi ^{2}/12$ and $\sum _{k=1}^{\infty }H_{k}^{2}/k^{2}=17\pi ^{4}/360$.) Our tools include some sophisticated combinatorial identities and properties of Bernoulli numbers.
References
Similar Articles
• Zhi-Wei Sun
• Affiliation: Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China
• MR Author ID: 254588
• Email: zwsun@nju.edu.cn
• Received by editor(s): July 22, 2010
• Received by editor(s) in revised form: November 23, 2010
• Published electronically: June 8, 2011
• Additional Notes: The author was supported by the National Natural Science Foundation (grant 10871087) of China
• Communicated by: Matthew A. Papanikolas