Comparison principles for self-similar potential flow
HTML articles powered by AMS MathViewer
- by Gui-Qiang G. Chen and Mikhail Feldman
- Proc. Amer. Math. Soc. 140 (2012), 651-663
- DOI: https://doi.org/10.1090/S0002-9939-2011-10937-7
- Published electronically: June 21, 2011
- PDF | Request permission
Abstract:
We establish a strong comparison principle, as well as a weak comparison principle and a Hopf-type lemma, for elliptic solutions of the self-similar potential flow equation. A major difference from the steady case is that the coefficients of the equation depend on the potential function itself, as well as its gradient. We employ the divergence structure and other features of the equation to derive the results.References
- Myoungjean Bae, Gui-Qiang Chen, and Mikhail Feldman, Regularity of solutions to regular shock reflection for potential flow, Invent. Math. 175 (2009), no. 3, 505–543. MR 2471595, DOI 10.1007/s00222-008-0156-4
- Gui-Qiang Chen and Mikhail Feldman, Global solutions of shock reflection by large-angle wedges for potential flow, Ann. of Math. (2) 171 (2010), no. 2, 1067–1182. MR 2630061, DOI 10.4007/annals.2010.171.1067
- Gui-Qiang Chen and Mikhail Feldman, Shock reflection-diffraction phenomena and multidimensional conservation laws, Hyperbolic problems: theory, numerics and applications, Proc. Sympos. Appl. Math., vol. 67, Amer. Math. Soc., Providence, RI, 2009, pp. 25–51. MR 2605211, DOI 10.1090/psapm/067.1/2605211
- G.-Q. Chen and M. Feldman, Potential Theory of Shock Reflection-Diffraction and von Neumann’s Conjectures, monograph, preprint, 2011.
- G.-Q. Chen and M. Feldman, Shock reflection-diffraction and nonlinear partial differential equations of mixed type, Contemporary Mathematics, AMS, Providence, RI, 2011 (to appear).
- R. Courant and K. O. Friedrichs, Supersonic flow and shock waves, Applied Mathematical Sciences, Vol. 21, Springer-Verlag, New York-Heidelberg, 1976. Reprinting of the 1948 original. MR 0421279, DOI 10.1007/978-1-4684-9364-1
- Constantine M. Dafermos, Hyperbolic conservation laws in continuum physics, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325, Springer-Verlag, Berlin, 2010. MR 2574377, DOI 10.1007/978-3-642-04048-1
- Volker Elling and Tai-Ping Liu, The ellipticity principle for self-similar potential flows, J. Hyperbolic Differ. Equ. 2 (2005), no. 4, 909–917. MR 2195986, DOI 10.1142/S0219891605000646
- Volker Elling and Tai-Ping Liu, Supersonic flow onto a solid wedge, Comm. Pure Appl. Math. 61 (2008), no. 10, 1347–1448. MR 2436185, DOI 10.1002/cpa.20231
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- James Glimm and Andrew J. Majda (eds.), Multidimensional hyperbolic problems and computations, The IMA Volumes in Mathematics and its Applications, vol. 29, Springer-Verlag, New York, 1991. Papers from the IMA Workshop held in Minneapolis, Minnesota, April 3–14, 1989. MR 1087068, DOI 10.1007/978-1-4613-9121-0
- J. Hadamard, Leçons sur la Propagation des Ondes et les Équations de l’Hydrodynamique, Hermann, Paris, 1903 (Reprinted by Chelsea, 1949).
- Andrew Majda and Enrique Thomann, Multidimensional shock fronts for second order wave equations, Comm. Partial Differential Equations 12 (1987), no. 7, 777–828. MR 890631, DOI 10.1080/03605308708820509
- Cathleen S. Morawetz, Potential theory for regular and Mach reflection of a shock at a wedge, Comm. Pure Appl. Math. 47 (1994), no. 5, 593–624. MR 1278346, DOI 10.1002/cpa.3160470502
Bibliographic Information
- Gui-Qiang G. Chen
- Affiliation: Mathematical Institute, University of Oxford, Oxford, OX1 3LB, United Kingdom – and – Department of Mathematics, Northwestern University, Evanston, Illinois 60208
- MR Author ID: 249262
- ORCID: 0000-0001-5146-3839
- Email: chengq@maths.ox.ac.uk
- Mikhail Feldman
- Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706-1388
- MR Author ID: 226925
- Email: feldman@math.wisc.edu
- Received by editor(s): April 26, 2010
- Received by editor(s) in revised form: December 4, 2010
- Published electronically: June 21, 2011
- Communicated by: Walter Craig
- © Copyright 2011 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 140 (2012), 651-663
- MSC (2010): Primary 35B51, 76N15, 76G25, 35Q35, 35J62, 35L65
- DOI: https://doi.org/10.1090/S0002-9939-2011-10937-7
- MathSciNet review: 2846335