## Periodic solutions of radially symmetric perturbations of Newtonian systems

HTML articles powered by AMS MathViewer

- by Alessandro Fonda and Rodica Toader PDF
- Proc. Amer. Math. Soc.
**140**(2012), 1331-1341 Request permission

## Abstract:

The classical Newton equation for the motion of a body in a gravitational central field is here modified in order to include periodic central forces. We prove that infinitely many periodic solutions still exist in this case. These solutions have periods which are large integer multiples of the period of the forcing and rotate exactly once around the origin in their period time.## References

- Antonio Ambrosetti and Vittorio Coti Zelati,
*Periodic solutions of singular Lagrangian systems*, Progress in Nonlinear Differential Equations and their Applications, vol. 10, Birkhäuser Boston, Inc., Boston, MA, 1993. MR**1267225**, DOI 10.1007/978-1-4612-0319-3 - Kuo-Chang Chen,
*Variational constructions for some satellite orbits in periodic gravitational force fields*, Amer. J. Math.**132**(2010), no. 3, 681–709. MR**2666904**, DOI 10.1353/ajm.0.0124 - Jifeng Chu and Daniel Franco,
*Non-collision periodic solutions of second order singular dynamical systems*, J. Math. Anal. Appl.**344**(2008), no. 2, 898–905. MR**2426318**, DOI 10.1016/j.jmaa.2008.03.041 - Colette De Coster and Patrick Habets,
*Two-point boundary value problems: lower and upper solutions*, Mathematics in Science and Engineering, vol. 205, Elsevier B. V., Amsterdam, 2006. MR**2225284** - Alessandro Fonda and Rodica Toader,
*Periodic orbits of radially symmetric Keplerian-like systems: a topological degree approach*, J. Differential Equations**244**(2008), no. 12, 3235–3264. MR**2420520**, DOI 10.1016/j.jde.2007.11.005 - A. Fonda and R. Toader, Periodic orbits of radially symmetric systems with a singularity: the repulsive case, Adv. Nonlinear Stud., to appear.
- Alessandro Fonda and Antonio J. Ureña,
*Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force*, Discrete Contin. Dyn. Syst.**29**(2011), no. 1, 169–192. MR**2725286**, DOI 10.3934/dcds.2011.29.169 - F. Gabern, W. S. Koon, J. E. Marsden, and D. J. Scheeres,
*Binary asteroid observation orbits from a global dynamical perspective*, SIAM J. Appl. Dyn. Syst.**5**(2006), no. 2, 252–279. MR**2237147**, DOI 10.1137/050641843 - Robert E. Gaines and Jean L. Mawhin,
*Coincidence degree, and nonlinear differential equations*, Lecture Notes in Mathematics, Vol. 568, Springer-Verlag, Berlin-New York, 1977. MR**0637067** - J.-P. Gossez and P. Omari,
*Non-ordered lower and upper solutions in semilinear elliptic problems*, Comm. Partial Differential Equations**19**(1994), no. 7-8, 1163–1184. MR**1284805**, DOI 10.1080/03605309408821049 - P. Habets and L. Sanchez,
*Periodic solutions of dissipative dynamical systems with singular potentials*, Differential Integral Equations**3**(1990), no. 6, 1139–1149. MR**1073063** - E. M. Landesman and A. C. Lazer,
*Nonlinear perturbations of linear elliptic boundary value problems at resonance*, J. Math. Mech.**19**(1969/1970), 609–623. MR**0267269** - A. C. Lazer and S. Solimini,
*On periodic solutions of nonlinear differential equations with singularities*, Proc. Amer. Math. Soc.**99**(1987), no. 1, 109–114. MR**866438**, DOI 10.1090/S0002-9939-1987-0866438-7 - Pedro J. Torres,
*Non-collision periodic solutions of forced dynamical systems with weak singularities*, Discrete Contin. Dyn. Syst.**11**(2004), no. 2-3, 693–698. MR**2083439**, DOI 10.3934/dcds.2004.11.693 - Eberhard Zeidler,
*Nonlinear functional analysis and its applications. I*, Springer-Verlag, New York, 1986. Fixed-point theorems; Translated from the German by Peter R. Wadsack. MR**816732**, DOI 10.1007/978-1-4612-4838-5

## Additional Information

**Alessandro Fonda**- Affiliation: Dipartimento di Matematica e Informatica, Università di Trieste, Piazzale Europa 1, I-34127 Trieste, Italy
- Email: a.fonda@units.it
**Rodica Toader**- Affiliation: Dipartimento di Ingegneria Civile e Architettura, Università di Udine, Via delle Scienze 208, I-33100 Udine, Italy
- Email: toader@uniud.it
- Received by editor(s): November 30, 2009
- Received by editor(s) in revised form: January 4, 2011
- Published electronically: August 3, 2011
- Communicated by: Yingei Yi
- © Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**140**(2012), 1331-1341 - MSC (2010): Primary 34C25
- DOI: https://doi.org/10.1090/S0002-9939-2011-10992-4
- MathSciNet review: 2869116