On a discrete version of Tanaka’s theorem for maximal functions
HTML articles powered by AMS MathViewer
- by Jonathan Bober, Emanuel Carneiro, Kevin Hughes and Lillian B. Pierce
- Proc. Amer. Math. Soc. 140 (2012), 1669-1680
- DOI: https://doi.org/10.1090/S0002-9939-2011-11008-6
- Published electronically: September 1, 2011
- PDF | Request permission
Corrigendum: Proc. Amer. Math. Soc. 143 (2015), 5471-5473.
Abstract:
In this paper we prove a discrete version of Tanaka’s theorem for the Hardy-Littlewood maximal operator in dimension $n=1$, both in the non-centered and centered cases. For the non-centered maximal operator $\widetilde {M}$ we prove that, given a function $f: \mathbb {Z} \to \mathbb {R}$ of bounded variation, \[ \operatorname {Var}(\widetilde {M} f) \leq \operatorname {Var}(f),\] where $\operatorname {Var}(f)$ represents the total variation of $f$. For the centered maximal operator $M$ we prove that, given a function $f: \mathbb {Z} \to \mathbb {R}$ such that $f \in \ell ^1(\mathbb {Z})$, \[ \operatorname {Var}(Mf) \leq C \|f\|_{\ell ^1(\mathbb {Z})}.\] This provides a positive solution to a question of Hajłasz and Onninen in the discrete one-dimensional case.References
- J. M. Aldaz and J. Pérez Lázaro, Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities, Trans. Amer. Math. Soc. 359 (2007), no. 5, 2443–2461. MR 2276629, DOI 10.1090/S0002-9947-06-04347-9
- J. Bourgain, On the maximal ergodic theorem for certain subsets of the integers, Israel J. Math. 61 (1988), no. 1, 39–72. MR 937581, DOI 10.1007/BF02776301
- J. Bourgain, On the pointwise ergodic theorem on $L^p$ for arithmetic sets, Israel J. Math. 61 (1988), no. 1, 73–84. MR 937582, DOI 10.1007/BF02776302
- Emanuel Carneiro and Diego Moreira, On the regularity of maximal operators, Proc. Amer. Math. Soc. 136 (2008), no. 12, 4395–4404. MR 2431055, DOI 10.1090/S0002-9939-08-09515-4
- Piotr Hajłasz and Jan Malý, On approximate differentiability of the maximal function, Proc. Amer. Math. Soc. 138 (2010), no. 1, 165–174. MR 2550181, DOI 10.1090/S0002-9939-09-09971-7
- Piotr Hajłasz and Jani Onninen, On boundedness of maximal functions in Sobolev spaces, Ann. Acad. Sci. Fenn. Math. 29 (2004), no. 1, 167–176. MR 2041705
- Alexandru D. Ionescu, Elias M. Stein, Akos Magyar, and Stephen Wainger, Discrete Radon transforms and applications to ergodic theory, Acta Math. 198 (2007), no. 2, 231–298. MR 2318564, DOI 10.1007/s11511-007-0016-x
- Alexandru D. Ionescu and Stephen Wainger, $L^p$ boundedness of discrete singular Radon transforms, J. Amer. Math. Soc. 19 (2006), no. 2, 357–383. MR 2188130, DOI 10.1090/S0894-0347-05-00508-4
- Juha Kinnunen, The Hardy-Littlewood maximal function of a Sobolev function, Israel J. Math. 100 (1997), 117–124. MR 1469106, DOI 10.1007/BF02773636
- Juha Kinnunen and Peter Lindqvist, The derivative of the maximal function, J. Reine Angew. Math. 503 (1998), 161–167. MR 1650343
- Juha Kinnunen and Eero Saksman, Regularity of the fractional maximal function, Bull. London Math. Soc. 35 (2003), no. 4, 529–535. MR 1979008, DOI 10.1112/S0024609303002017
- Hannes Luiro, Continuity of the maximal operator in Sobolev spaces, Proc. Amer. Math. Soc. 135 (2007), no. 1, 243–251. MR 2280193, DOI 10.1090/S0002-9939-06-08455-3
- A. Magyar, E. M. Stein, and S. Wainger, Discrete analogues in harmonic analysis: spherical averages, Ann. of Math. (2) 155 (2002), no. 1, 189–208. MR 1888798, DOI 10.2307/3062154
- L. B. Pierce, Discrete fractional Radon transforms and quadratic forms, to appear in Duke Math. J.
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Elias M. Stein and Stephen Wainger, Discrete analogues in harmonic analysis. I. $l^2$ estimates for singular Radon transforms, Amer. J. Math. 121 (1999), no. 6, 1291–1336. MR 1719802
- E. M. Stein and S. Wainger, Discrete analogues in harmonic analysis. II. Fractional integration, J. Anal. Math. 80 (2000), 335–355. MR 1771530, DOI 10.1007/BF02791541
- Elias M. Stein and Stephen Wainger, Two discrete fractional integral operators revisited, J. Anal. Math. 87 (2002), 451–479. Dedicated to the memory of Thomas H. Wolff. MR 1945293, DOI 10.1007/BF02868485
- Hitoshi Tanaka, A remark on the derivative of the one-dimensional Hardy-Littlewood maximal function, Bull. Austral. Math. Soc. 65 (2002), no. 2, 253–258. MR 1898539, DOI 10.1017/S0004972700020293
Bibliographic Information
- Jonathan Bober
- Affiliation: School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540
- Address at time of publication: Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195-4350
- Email: bober@math.ias.edu, jwbober@uw.edu
- Emanuel Carneiro
- Affiliation: School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540
- Address at time of publication: Instituto de Matematica Pura e Aplicada–IMPA, Estrada Dona Castorina 110, Rio de Janeiro, RJ, 22460-320, Brazil
- Email: ecarneiro@math.ias.edu, carneiro@impa.br
- Kevin Hughes
- Affiliation: Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, New Jersey 08544
- MR Author ID: 962878
- ORCID: 0000-0002-8621-8259
- Email: kjhughes@math.princeton.edu
- Lillian B. Pierce
- Affiliation: School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540
- Address at time of publication: Mathematical Institute, 24-29 St Giles, Oxford OX1 3LB, United Kingdom
- MR Author ID: 757898
- Email: lbpierce@math.ias.edu, lillian.pierce@maths.ox.ac.uk
- Received by editor(s): May 6, 2010
- Received by editor(s) in revised form: January 14, 2011
- Published electronically: September 1, 2011
- Communicated by: Thomas Schlumprecht
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 1669-1680
- MSC (2010): Primary 42B25, 46E35
- DOI: https://doi.org/10.1090/S0002-9939-2011-11008-6
- MathSciNet review: 2869151