Rational homotopy type of the classifying space for fibrewise self-equivalences
HTML articles powered by AMS MathViewer
- by Urtzi Buijs and Samuel B. Smith
- Proc. Amer. Math. Soc. 141 (2013), 2153-2167
- DOI: https://doi.org/10.1090/S0002-9939-2012-11560-6
- Published electronically: December 13, 2012
- PDF | Request permission
Abstract:
Let $p \colon E \to B$ be a fibration of simply connected CW complexes with finite base $B$ and fibre $F$. Let ${\mathrm {aut}}_1(p)$ denote the identity component of the space of all fibre-homotopy self-equivalences of $p$. Let ${\mathrm {Baut}}_1(p)$ denote the classifying space for this topological monoid. We give a differential graded Lie algebra model for ${\mathrm {Baut}}_1(p)$, connecting the results of recent work by the authors and others. We use this model to give classification results for the rational homotopy types represented by ${\mathrm {Baut}}_1(p)$ and also to obtain conditions under which the monoid ${\mathrm {aut}}_1(p)$ is a double loop-space after rationalization.References
- M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523–615. MR 702806, DOI 10.1098/rsta.1983.0017
- Urtzi Buijs, Yves Félix, and Aniceto Murillo, Lie models for the components of sections of a nilpotent fibration, Trans. Amer. Math. Soc. 361 (2009), no. 10, 5601–5614. MR 2515825, DOI 10.1090/S0002-9947-09-04870-3
- Urtzi Buijs, Yves Félix, and Aniceto Murillo, $L_\infty$ models of based mapping spaces, J. Math. Soc. Japan 63 (2011), no. 2, 503–524. MR 2793109
- Peter Booth, Philip Heath, Chris Morgan, and Renzo Piccinini, $H$-spaces of self-equivalences of fibrations and bundles, Proc. London Math. Soc. (3) 49 (1984), no. 1, 111–127. MR 743373, DOI 10.1112/plms/s3-49.1.111
- M. C. Crabb and W. A. Sutherland, Counting homotopy types of gauge groups, Proc. London Math. Soc. (3) 81 (2000), no. 3, 747–768. MR 1781154, DOI 10.1112/S0024611500012545
- Pierre Deligne, Phillip Griffiths, John Morgan, and Dennis Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), no. 3, 245–274. MR 382702, DOI 10.1007/BF01389853
- Albrecht Dold and Richard Lashof, Principal quasi-fibrations and fibre homotopy equivalence of bundles, Illinois J. Math. 3 (1959), 285–305. MR 101521
- Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR 1802847, DOI 10.1007/978-1-4613-0105-9
- Yves Félix, Gregory Lupton, and Samuel B. Smith, The rational homotopy type of the space of self-equivalences of a fibration, Homology Homotopy Appl. 12 (2010), no. 2, 371–400. MR 2771595, DOI 10.4310/HHA.2010.v12.n2.a13
- Yves Félix and John Oprea, Rational homotopy of gauge groups, Proc. Amer. Math. Soc. 137 (2009), no. 4, 1519–1527. MR 2465678, DOI 10.1090/S0002-9939-08-09721-9
- J.-B. Gatsinzi, The homotopy Lie algebra of classifying spaces, J. Pure Appl. Algebra 120 (1997), no. 3, 281–289. MR 1468920, DOI 10.1016/S0022-4049(96)00037-0
- Daniel H. Gottlieb, On fibre spaces and the evaluation map, Ann. of Math. (2) 87 (1968), 42–55. MR 221508, DOI 10.2307/1970593
- Stephen Halperin, Rational fibrations, minimal models, and fibrings of homogeneous spaces, Trans. Amer. Math. Soc. 244 (1978), 199–224. MR 515558, DOI 10.1090/S0002-9947-1978-0515558-4
- Peter Hilton, Guido Mislin, and Joe Roitberg, Localization of nilpotent groups and spaces, North-Holland Mathematics Studies, No. 15, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. MR 0478146
- John R. Klein, Claude L. Schochet, and Samuel B. Smith, Continuous trace $C^*$-algebras, gauge groups and rationalization, J. Topol. Anal. 1 (2009), no. 3, 261–288. MR 2574026, DOI 10.1142/S179352530900014X
- Akira Kono, A note on the homotopy type of certain gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 117 (1991), no. 3-4, 295–297. MR 1103296, DOI 10.1017/S0308210500024732
- Akira Kono and Shuichi Tsukuda, 4-manifolds $X$ over $B\textrm {SU}(2)$ and the corresponding homotopy types $\textrm {Map}(X,B\textrm {SU}(2))$, J. Pure Appl. Algebra 151 (2000), no. 3, 227–237. MR 1776430, DOI 10.1016/S0022-4049(99)00069-9
- J. Peter May, Classifying spaces and fibrations, Mem. Amer. Math. Soc. 1 (1975), no. 1, 155, xiii+98. MR 370579, DOI 10.1090/memo/0155
- H. Scheerer, On rationalized $H$- and co-$H$-spaces. With an appendix on decomposable $H$- and co-$H$-spaces, Manuscripta Math. 51 (1985), no. 1-3, 63–87. MR 788673, DOI 10.1007/BF01168347
- Claude L. Schochet and Samuel B. Smith, Localization of grouplike function and section spaces with compact domain, Homotopy theory of function spaces and related topics, Contemp. Math., vol. 519, Amer. Math. Soc., Providence, RI, 2010, pp. 189–202. MR 2648714, DOI 10.1090/conm/519/10242
- H. Shiga and M. Tezuka, Rational fibrations, homogeneous spaces with positive Euler characteristics and Jacobians, Ann. Inst. Fourier (Grenoble) 37 (1987), no. 1, 81–106 (English, with French summary). MR 894562, DOI 10.5802/aif.1078
- Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 646078, DOI 10.1007/BF02684341
- Daniel Tanré, Homotopie rationnelle: modèles de Chen, Quillen, Sullivan, Lecture Notes in Mathematics, vol. 1025, Springer-Verlag, Berlin, 1983 (French). MR 764769, DOI 10.1007/BFb0071482
- Shuichi Tsukuda, A remark on the homotopy type of the classifying space of certain gauge groups, J. Math. Kyoto Univ. 36 (1996), no. 1, 123–128. MR 1381543, DOI 10.1215/kjm/1250518608
Bibliographic Information
- Urtzi Buijs
- Affiliation: Departament d’Àlgebra i Geometria, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain
- Email: ubuijs@ub.edu
- Samuel B. Smith
- Affiliation: Department of Mathematics, Saint Joseph’s University, Philadelphia, Pennsylvania 19131
- MR Author ID: 333158
- Email: smith@sju.edu
- Received by editor(s): July 26, 2011
- Received by editor(s) in revised form: September 18, 2011
- Published electronically: December 13, 2012
- Additional Notes: The first author was partially supported by the Ministerio de Ciencia e Innovación grant MTM2010-15831 and by the Junta de Andalucía grant FQM-213.
- Communicated by: Brooke Shipley
- © Copyright 2012 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 141 (2013), 2153-2167
- MSC (2010): Primary 55P62, 55Q15
- DOI: https://doi.org/10.1090/S0002-9939-2012-11560-6
- MathSciNet review: 3034442