A gap for the maximum number of mutually unbiased bases
HTML articles powered by AMS MathViewer
- by Mihály Weiner
- Proc. Amer. Math. Soc. 141 (2013), 1963-1969
- DOI: https://doi.org/10.1090/S0002-9939-2013-11487-5
- Published electronically: January 23, 2013
- PDF | Request permission
Abstract:
A collection of pairwise mutually unbiased bases (in short: MUB) in $d>1$ dimensions may consist of at most $d+1$ bases. Such “complete” collections are known to exist in $\mathbb {C}^d$ when $d$ is a power of a prime. However, in general, little is known about the maximum number $N(d)$ of bases that a collection of MUB in $\mathbb {C}^d$ can have.
In this work it is proved that a collection of $d$ MUB in $\mathbb {C}^d$ can always be completed. Hence $N(d)\neq d$, and when $d>1$ we have a dichotomy: either $N(d)=d+1$ (so that there exists a complete collection of MUB) or $N(d)\leq d-1$. In the course of the proof an interesting new characterization is given for a linear subspace of $M_d(\mathbb {C})$ to be a subalgebra.
References
- William K. Wootters, A Wigner-function formulation of finite-state quantum mechanics, Ann. Physics 176 (1987), no. 1, 1–21. MR 893477, DOI 10.1016/0003-4916(87)90176-X
- N. J. Cerf, M. Bourennane, A. Karlsson and N. Gisin: Security of quantum key distribution using $d$-level systems. Phys. Rev. Lett. 88 (2002), 127901.
- I. D. Ivanović, Geometrical description of quantal state determination, J. Phys. A 14 (1981), no. 12, 3241–3245. MR 639558, DOI 10.1088/0305-4470/14/12/019
- William K. Wootters and Brian D. Fields, Optimal state-determination by mutually unbiased measurements, Ann. Physics 191 (1989), no. 2, 363–381. MR 1003014, DOI 10.1016/0003-4916(89)90322-9
- P. Butterley and W. Hall: Numerical evidence for the maximum number of mutually unbiased bases in dimension six. Phys. Lett. A 369 (2007), 5.
- Philippe Jaming, Máté Matolcsi, Péter Móra, Ferenc Szöllősi, and Mihály Weiner, A generalized Pauli problem and an infinite family of MUB-triplets in dimension 6, J. Phys. A 42 (2009), no. 24, 245305, 25. MR 2515542, DOI 10.1088/1751-8113/42/24/245305
- Pawel Wocjan and Thomas Beth, New construction of mutually unbiased bases in square dimensions, Quantum Inf. Comput. 5 (2005), no. 2, 93–101. MR 2132048, DOI 10.26421/QIC5.2-1
- Metod Saniga and Michel Planat, Viewing sets of mutually unbiased bases as arcs in finite projective planes, Chaos Solitons Fractals 26 (2005), no. 5, 1267–1270. MR 2149314, DOI 10.1016/j.chaos.2005.03.008
- Stephen Brierley, Stefan Weigert, and Ingemar Bengtsson, All mutually unbiased bases in dimensions two to five, Quantum Inf. Comput. 10 (2010), no. 9-10, 803–820. MR 2731441, DOI 10.26421/QIC10.9-10-6
- Personal communication from P. Sziklai, T. Szőnyi and Zs. Weiner.
- R. H. Bruck, Finite nets. II. Uniqueness and imbedding, Pacific J. Math. 13 (1963), 421–457. MR 154824, DOI 10.2140/pjm.1963.13.421
- J. H. van Lint and R. M. Wilson, A course in combinatorics, 2nd ed., Cambridge University Press, Cambridge, 2001. MR 1871828, DOI 10.1017/CBO9780511987045
- Ian M. Wanless and Bridget S. Webb, The existence of Latin squares without orthogonal mates, Des. Codes Cryptogr. 40 (2006), no. 1, 131–135. MR 2226288, DOI 10.1007/s10623-006-8168-9
- S. S. Shrikhande, A note on mutually orthogonal Latin squares, Sankhyā Ser. A 23 (1961), 115–116. MR 137247
- P. Oscar Boykin, Meera Sitharam, Pham Huu Tiep, and Pawel Wocjan, Mutually unbiased bases and orthogonal decompositions of Lie algebras, Quantum Inf. Comput. 7 (2007), no. 4, 371–382. MR 2363400, DOI 10.26421/QIC7.4-6
- Ingemar Bengtsson and Åsa Ericsson, Mutually unbiased bases and the complementarity polytope, Open Syst. Inf. Dyn. 12 (2005), no. 2, 107–120. MR 2151576, DOI 10.1007/s11080-005-5721-3
- Ingemar Bengtsson, Wojciech Bruzda, Åsa Ericsson, Jan-Åke Larsson, Wojciech Tadej, and Karol Życzkowski, Mutually unbiased bases and Hadamard matrices of order six, J. Math. Phys. 48 (2007), no. 5, 052106, 21. MR 2326331, DOI 10.1063/1.2716990
- Dénes Petz, Complementarity in quantum systems, Rep. Math. Phys. 59 (2007), no. 2, 209–224. MR 2340194, DOI 10.1016/S0034-4877(07)00010-9
- Dénes Petz and Jonas Kahn, Complementary reductions for two qubits, J. Math. Phys. 48 (2007), no. 1, 012107, 6. MR 2292598, DOI 10.1063/1.2424883
- Hiromichi Ohno, Dénes Petz, and András Szántó, Quasi-orthogonal subalgebras of $4\times 4$ matrices, Linear Algebra Appl. 425 (2007), no. 1, 109–118. MR 2334495, DOI 10.1016/j.laa.2007.03.020
- Hiromichi Ohno, Quasi-orthogonal subalgebras of matrix algebras, Linear Algebra Appl. 429 (2008), no. 8-9, 2146–2158. MR 2446648, DOI 10.1016/j.laa.2008.06.012
- Dénes Petz, András Szántó, and Mihály Weiner, Complementarity and the algebraic structure of four-level quantum systems, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12 (2009), no. 1, 99–116. MR 2509987, DOI 10.1142/S0219025709003598
- Mihály Weiner, On orthogonal systems of matrix algebras, Linear Algebra Appl. 433 (2010), no. 3, 520–533. MR 2653817, DOI 10.1016/j.laa.2010.03.017
- Sorin Popa, Orthogonal pairs of $\ast$-subalgebras in finite von Neumann algebras, J. Operator Theory 9 (1983), no. 2, 253–268. MR 703810
- R. F. Werner, All teleportation and dense coding schemes, J. Phys. A 34 (2001), no. 35, 7081–7094. Quantum information and computation. MR 1863141, DOI 10.1088/0305-4470/34/35/332
- H. Ohno and D. Petz, Generalizations of Pauli channels, Acta Math. Hungar. 124 (2009), no. 1-2, 165–177. MR 2520625, DOI 10.1007/s10474-009-8171-5
- Man Duen Choi, A Schwarz inequality for positive linear maps on $C^{\ast } \$-algebras, Illinois J. Math. 18 (1974), 565–574. MR 355615
Bibliographic Information
- Mihály Weiner
- Affiliation: Department of Analysis, Mathematical Institute, Budapest University of Economics and Technology (BME), Pf. 91, H-1521 Budapest, Hungary
- Email: mweiner@renyi.hu
- Received by editor(s): July 16, 2010
- Received by editor(s) in revised form: October 4, 2011
- Published electronically: January 23, 2013
- Additional Notes: Supported in part by the ERC Advanced Grant 227458 OACFT “Operator Algebras and Conformal Field Theory” and the Momentum Fund of the Hungarian Academy of Sciences.
- Communicated by: Marius Junge
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 1963-1969
- MSC (2010): Primary 15A30, 47L05, 81P70
- DOI: https://doi.org/10.1090/S0002-9939-2013-11487-5
- MathSciNet review: 3034423