## Index of reducibility of distinguished parameter ideals and sequentially Cohen-Macaulay modules

HTML articles powered by AMS MathViewer

- by Hoang Le Truong PDF
- Proc. Amer. Math. Soc.
**141**(2013), 1971-1978 Request permission

## Abstract:

It is shown that every sequentially Cohen-Macaulay module eventually has constant index of reducibility for distinguished parameter ideals.## References

- Nguyen Tu Cuong and Doan Trung Cuong,
*On sequentially Cohen-Macaulay modules*, Kodai Math. J.**30**(2007), no. 3, 409–428. MR**2372128** - Nguyen Tu Cuong and Le Thanh Nhan,
*Pseudo Cohen-Macaulay and pseudo generalized Cohen-Macaulay modules*, J. Algebra**267**(2003), no. 1, 156–177. MR**1993472**, DOI 10.1016/S0021-8693(03)00225-4 - Nguyen Tu Cuong and Hoang Le Truong,
*Asymptotic behavior of parameter ideals in generalized Cohen-Macaulay modules*, J. Algebra**320**(2008), no. 1, 158–168. MR**2417983**, DOI 10.1016/j.jalgebra.2007.12.008 - Shizuo Endo and Masao Narita,
*The number of irreducible components of an ideal and the semi-regularity of a local ring*, Proc. Japan Acad.**40**(1964), 627–630. MR**175932** - Shiro Goto,
*Approximately Cohen-Macaulay rings*, J. Algebra**76**(1982), no. 1, 214–225. MR**659220**, DOI 10.1016/0021-8693(82)90248-4 - Shiro Goto and Hideto Sakurai,
*The equality $I^2=QI$ in Buchsbaum rings*, Rend. Sem. Mat. Univ. Padova**110**(2003), 25–56. MR**2033000** - Shiro Goto and Naoyoshi Suzuki,
*Index of reducibility of parameter ideals in a local ring*, J. Algebra**87**(1984), no. 1, 53–88. MR**736769**, DOI 10.1016/0021-8693(84)90160-1 - D. G. Northcott,
*On irreducible ideals in local rings*, J. London Math. Soc.**32**(1957), 82–88. MR**83477**, DOI 10.1112/jlms/s1-32.1.82 - Mark W. Rogers,
*The index of reducibility of parameter ideals in low dimension*, J. Algebra**278**(2004), no. 2, 571–584. MR**2071653**, DOI 10.1016/j.jalgebra.2004.02.035 - Peter Schenzel,
*On the dimension filtration and Cohen-Macaulay filtered modules*, Commutative algebra and algebraic geometry (Ferrara), Lecture Notes in Pure and Appl. Math., vol. 206, Dekker, New York, 1999, pp. 245–264. MR**1702109**, DOI 10.1090/conm/239/03606 - Richard P. Stanley,
*Combinatorics and commutative algebra*, 2nd ed., Progress in Mathematics, vol. 41, Birkhäuser Boston, Inc., Boston, MA, 1996. MR**1453579**

## Additional Information

**Hoang Le Truong**- Affiliation: Institute of Mathematics, 18 Hoang Quoc Viet Road, 10307 Hanoi, Viet Nam
- MR Author ID: 842253
- Email: hltruong@math.ac.vn
- Received by editor(s): August 27, 2011
- Received by editor(s) in revised form: October 4, 2011
- Published electronically: January 25, 2013
- Communicated by: Irena Peeva
- © Copyright 2013
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**141**(2013), 1971-1978 - MSC (2010): Primary 13D45; Secondary 13H10
- DOI: https://doi.org/10.1090/S0002-9939-2013-11515-7
- MathSciNet review: 3034424