## A reduced set of moves on one-vertex ribbon graphs coming from links

HTML articles powered by AMS MathViewer

- by Susan Abernathy, Cody Armond, Moshe Cohen, Oliver T. Dasbach, Hannah Manuel, Chris Penn, Heather M. Russell and Neal W. Stoltzfus PDF
- Proc. Amer. Math. Soc.
**142**(2014), 737-752 Request permission

## Abstract:

Every link in $\mathbb {R}^3$ can be represented by a one-vertex ribbon graph. We prove a Markov type theorem on this subset of link diagrams.## References

- Joan S. Birman,
*Braids, links, and mapping class groups*, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. MR**0375281** - Dror Bar-Natan,
*On Khovanov’s categorification of the Jones polynomial*, Algebr. Geom. Topol.**2**(2002), 337–370. MR**1917056**, DOI 10.2140/agt.2002.2.337 - Béla Bollobás and Oliver Riordan,
*A polynomial invariant of graphs on orientable surfaces*, Proc. London Math. Soc. (3)**83**(2001), no. 3, 513–531. MR**1851080**, DOI 10.1112/plms/83.3.513 - Moshe Cohen, Oliver T. Dasbach, and Heather M. Russell,
*A twisted dimer model for knots*, arXiv:1010.5228v2 (2010), 1–16. - Abhijit Champanerkar, Ilya Kofman, and Neal Stoltzfus,
*Quasi-tree expansion for the Bollobás-Riordan-Tutte polynomial*, Bull. Lond. Math. Soc.**43**(2011), no. 5, 972–984. MR**2854567**, DOI 10.1112/blms/bdr034 - Oliver T. Dasbach, David Futer, Efstratia Kalfagianni, Xiao-Song Lin, and Neal W. Stoltzfus,
*The Jones polynomial and graphs on surfaces*, J. Combin. Theory Ser. B**98**(2008), no. 2, 384–399. MR**2389605**, DOI 10.1016/j.jctb.2007.08.003 - Oliver T. Dasbach, David Futer, Efstratia Kalfagianni, Xiao-Song Lin, and Neal W. Stoltzfus,
*Alternating sum formulae for the determinant and other link invariants*, J. Knot Theory Ramifications**19**(2010), no. 6, 765–782. MR**2665767**, DOI 10.1142/S021821651000811X - Oliver T. Dasbach and Adam M. Lowrance,
*A Turaev surface approach to Khovanov homology*, arXiv:1107.2344 (2011), 1–30. - Louis H. Kauffman,
*On knots*, Annals of Mathematics Studies, vol. 115, Princeton University Press, Princeton, NJ, 1987. MR**907872** - Louis H. Kauffman,
*State models and the Jones polynomial*, Topology**26**(1987), no. 3, 395–407. MR**899057**, DOI 10.1016/0040-9383(87)90009-7 - Mikhail Khovanov,
*A categorification of the Jones polynomial*, Duke Math. J.**101**(2000), no. 3, 359–426. MR**1740682**, DOI 10.1215/S0012-7094-00-10131-7 - W. B. Raymond Lickorish,
*An introduction to knot theory*, Graduate Texts in Mathematics, vol. 175, Springer-Verlag, New York, 1997. MR**1472978**, DOI 10.1007/978-1-4612-0691-0 - V. O. Manturov,
*Knots and the bracket calculus*, Acta Appl. Math.**74**(2002), no. 3, 293–336. MR**1942533**, DOI 10.1023/A:1021154925574 - Ciprian Manolescu, Peter Ozsváth, and Sucharit Sarkar,
*A combinatorial description of knot Floer homology*, Ann. of Math. (2)**169**(2009), no. 2, 633–660. MR**2480614**, DOI 10.4007/annals.2009.169.633 - V. G. Turaev,
*A simple proof of the Murasugi and Kauffman theorems on alternating links*, Enseign. Math. (2)**33**(1987), no. 3-4, 203–225. MR**925987** - Pierre Vogel,
*Representation of links by braids: a new algorithm*, Comment. Math. Helv.**65**(1990), no. 1, 104–113. MR**1036132**, DOI 10.1007/BF02566597

## Additional Information

**Susan Abernathy**- Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
- Email: sabern1@tigers.lsu.edu
**Cody Armond**- Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
- Address at time of publication: Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242
- MR Author ID: 1039228
- Email: cody-armond@uiowa.edu
**Moshe Cohen**- Affiliation: Department of Mathematics, Bar-Ilan University, Ramat Gan 52900, Israel
- Email: cohenm10@macs.biu.ac.il
**Oliver T. Dasbach**- Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
- MR Author ID: 612149
- Email: kasten@math.lsu.edu
**Hannah Manuel**- Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
- Address at time of publication: Department of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332
- Email: hmanuel3@math.gatech.edu
**Chris Penn**- Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
- Email: coffee@math.lsu.edu
**Heather M. Russell**- Affiliation: Department of Mathematics, University of Southern California, Los Angeles, California 90089-2532
- Address at time of publication: Department of Mathematics and Computer Science, Washington College, Chestertown, Maryland 21620
- Email: hrussell2@washcoll.edu
**Neal W. Stoltzfus**- Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
- Email: stoltz@math.lsu.edu
- Received by editor(s): December 21, 2011
- Received by editor(s) in revised form: April 2, 2012
- Published electronically: November 18, 2013
- Communicated by: Daniel Ruberman
- © Copyright 2013
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**142**(2014), 737-752 - MSC (2010): Primary 05C10, 57M15, 57M25
- DOI: https://doi.org/10.1090/S0002-9939-2013-11807-1
- MathSciNet review: 3148509