On the Witt vector Frobenius
HTML articles powered by AMS MathViewer
- by Christopher Davis and Kiran S. Kedlaya
- Proc. Amer. Math. Soc. 142 (2014), 2211-2226
- DOI: https://doi.org/10.1090/S0002-9939-2014-11953-8
- Published electronically: March 20, 2014
Abstract:
We study the kernel and cokernel of the Frobenius map on the $p$-typical Witt vectors of a commutative ring, not necessarily of characteristic $p$. We give many equivalent conditions to surjectivity of the Frobenus map on both finite and infinite length Witt vectors. In particular, surjectivity on finite Witt vectors turns out to be stable under certain integral extensions; this provides a clean formulation of a strong generalization of Faltings’s almost purity theorem from $p$-adic Hodge theory, incorporating recent improvements by Kedlaya and Liu, and by Scholze.References
- J. Coates and R. Greenberg, Kummer theory for abelian varieties over local fields, Invent. Math. 124 (1996), no. 1-3, 129–174. MR 1369413, DOI 10.1007/s002220050048
- Gerd Faltings, $p$-adic Hodge theory, J. Amer. Math. Soc. 1 (1988), no. 1, 255–299. MR 924705, DOI 10.1090/S0894-0347-1988-0924705-1
- Laurent Fargues and Jean-Marc Fontaine, Courbes et fibrés vectoriels en théorie de Hodge $p$-adique (2011), in preparation; draft available at http://www.math.jussieu.fr/~fargues/Prepublications.html.
- Ofer Gabber and Lorenzo Ramero, Almost ring theory, Lecture Notes in Mathematics, vol. 1800, Springer-Verlag, Berlin, 2003. MR 2004652, DOI 10.1007/b10047
- Michiel Hazewinkel, Formal groups and applications, Pure and Applied Mathematics, vol. 78, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506881
- Lars Hesselholt, The big de Rham-Witt complex (2010), http://www.math.nagoya-u.ac.jp/~larsh/papers/028/.
- Luc Illusie, Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 4, 501–661 (French). MR 565469
- Kiran S. Kedlaya, Power series and $p$-adic algebraic closures, J. Number Theory 89 (2001), no. 2, 324–339. MR 1845241, DOI 10.1006/jnth.2000.2630
- Kiran S. Kedlaya and Ruochuan Liu, Relative $p$-adic Hodge theory, I: Foundations (2014), arXiv: 1301.0792v2.
- Bjorn Poonen, Maximally complete fields, Enseign. Math. (2) 39 (1993), no. 1-2, 87–106. MR 1225257
- Peter Scholze, Perfectoid spaces, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 245–313. MR 3090258, DOI 10.1007/s10240-012-0042-x
Bibliographic Information
- Christopher Davis
- Affiliation: Department of Mathematics, University of California Irvine, Irvine, California 92697
- Address at time of publication: Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
- Email: davis@math.ku.dk
- Kiran S. Kedlaya
- Affiliation: Department of Mathematics, University of California, San Diego, La Jolla, California 92093
- MR Author ID: 349028
- ORCID: 0000-0001-8700-8758
- Email: kedlaya@ucsd.edu
- Received by editor(s): March 21, 2012
- Received by editor(s) in revised form: July 7, 2012
- Published electronically: March 20, 2014
- Additional Notes: The first author was supported by the Max-Planck-Institut für Mathematik (Bonn).
The second author was supported by the NSF (CAREER grant DMS-0545904, grant DMS-1101343), DARPA (grant HR0011-09-1-0048), MIT (NEC Fund, Green professorship), and UCSD (Warschawski professorship). - Communicated by: Matthew A. Papanikolas
- © Copyright 2014 Christopher Davis and Kiran S. Kedlaya
- Journal: Proc. Amer. Math. Soc. 142 (2014), 2211-2226
- MSC (2010): Primary 13F35
- DOI: https://doi.org/10.1090/S0002-9939-2014-11953-8
- MathSciNet review: 3195748