$\infty$-minimal submanifolds
Author:
Nikolaos I. Katzourakis
Journal:
Proc. Amer. Math. Soc. 142 (2014), 2797-2811
MSC (2010):
Primary 35J47, 35J62, 53C24; Secondary 49J99
DOI:
https://doi.org/10.1090/S0002-9939-2014-12039-9
Published electronically:
May 5, 2014
MathSciNet review:
3209334
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We identify the Variational Principle governing $\infty$-Harmonic maps $u : \Omega \subseteq \mathbb {R}^n \longrightarrow \mathbb {R}^N$, that is, solutions to the $\infty$-Laplacian \begin{equation}\Delta _\infty u \ :=\ \Big (Du \otimes Du + |Du|^2 [Du]^\bot \! \otimes I \Big ) : D^2 u\ = \ 0.\end{equation} System \eqref{1} was first derived in the limit of the $p$-Laplacian as $p\rightarrow \infty$ in a 2012 paper of the author and was recently studied further by him. Here we show that \eqref{1} is the βEuler-Lagrange PDEβ of the vector-valued Calculus of Variations in $L^\infty$ for the functional \begin{equation} \|Du\|_{L^\infty (\Omega )}\ = \ \underset {\Omega }{\textrm {ess} \textrm {sup}} |Du|.\end{equation} We introduce the notion of $\infty$-Minimal Maps, which are Rank-One Absolute Minimals of \eqref{2} with β$\infty$-Minimal Areaβ of the submanifold $u(\Omega ) \subseteq \mathbb {R}^N$, and prove they solve \eqref{1}. The converse is true for immersions. We also establish a maximum principle for $|Du|$ for solutions to \eqref{1}. We further characterize minimal surfaces of $\mathbb {R}^3$ as those locally parameterizable by isothermal immersions with $\infty$-Minimal Area and show that isothermal $\infty$-Harmonic maps are rigid.
- Gunnar Aronsson, Minimization problems for the functional ${\rm sup}_{x}\,F(x,\,f(x),\,f^{\prime } (x))$, Ark. Mat. 6 (1965), 33β53 (1965). MR 196551, DOI https://doi.org/10.1007/BF02591326
- Gunnar Aronsson, Minimization problems for the functional ${\rm sup}_{x}\, F(x, f(x),f^ \prime (x))$. II, Ark. Mat. 6 (1966), 409β431 (1966). MR 203541, DOI https://doi.org/10.1007/BF02590964
- Gunnar Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551β561 (1967). MR 217665, DOI https://doi.org/10.1007/BF02591928
- Gunnar Aronsson, On the partial differential equation $u_{x}{}^{2}\!u_{xx} +2u_{x}u_{y}u_{xy}+u_{y}{}^{2}\!u_{yy}=0$, Ark. Mat. 7 (1968), 395β425 (1968). MR 237962, DOI https://doi.org/10.1007/BF02590989
- Gunnar Aronsson, Minimization problems for the functional ${\rm sup}_{x}\,F(x,\,f(x),\,f^{\prime } \,(x))$. III, Ark. Mat. 7 (1969), 509β512. MR 240690, DOI https://doi.org/10.1007/BF02590888
- E. N. Barron, L. C. Evans, and R. Jensen, The infinity Laplacian, Aronssonβs equation and their generalizations, Trans. Amer. Math. Soc. 360 (2008), no. 1, 77β101. MR 2341994, DOI https://doi.org/10.1090/S0002-9947-07-04338-3
- Luca Capogna and Andrew Raich, An Aronsson type approach to extremal quasiconformal mappings, J. Differential Equations 253 (2012), no. 3, 851β877. MR 2922655, DOI https://doi.org/10.1016/j.jde.2012.04.015
- Michael G. Crandall, A visit with the $\infty $-Laplace equation, Calculus of variations and nonlinear partial differential equations, Lecture Notes in Math., vol. 1927, Springer, Berlin, 2008, pp. 75β122. MR 2408259, DOI https://doi.org/10.1007/978-3-540-75914-0_3
- Nikolaos I. Katzourakis, Explicit singular viscosity solutions of the Aronsson equation, C. R. Math. Acad. Sci. Paris 349 (2011), no. 21-22, 1173β1176 (English, with English and French summaries). MR 2855498, DOI https://doi.org/10.1016/j.crma.2011.10.010
- Nikolaos I. Katzourakis, $L^\infty $ variational problems for maps and the Aronsson PDE system, J. Differential Equations 253 (2012), no. 7, 2123β2139. MR 2946966, DOI https://doi.org/10.1016/j.jde.2012.05.012
- N. I. Katzourakis, On the structure of ${\infty }$-harmonic maps, preprint, 2012.
- N. I. Katzourakis, Extremal ${\infty }$-quasiconformal immersions, preprint, 2012.
- N. I. Katzourakis, Contact solutions for nonlinear systems of partial differential equations, manuscript in preparation, 2012.
- Ye-Lin Ou, Tiffany Troutman, and Frederick Wilhelm, Infinity-harmonic maps and morphisms, Differential Geom. Appl. 30 (2012), no. 2, 164β178. MR 2913071, DOI https://doi.org/10.1016/j.difgeo.2011.11.011
- Scott Sheffield and Charles K. Smart, Vector-valued optimal Lipschitz extensions, Comm. Pure Appl. Math. 65 (2012), no. 1, 128β154. MR 2846639, DOI https://doi.org/10.1002/cpa.20391
- Ze-Ping Wang and Ye-Lin Ou, Classifications of some special infinity-harmonic maps, Balkan J. Geom. Appl. 14 (2009), no. 1, 120β131. MR 2539666
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35J47, 35J62, 53C24, 49J99
Retrieve articles in all journals with MSC (2010): 35J47, 35J62, 53C24, 49J99
Additional Information
Nikolaos I. Katzourakis
Affiliation:
Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo 14, E-48009, Bilbao, Spain
Address at time of publication:
Department of Mathematics and Statistics, University of Reading, Whiteknights P.Β O. Box 220, Reading RG6 6AX, United Kingdom
Email:
n.katzourakis@reading.ac.uk
Keywords:
$\infty$-Harmonic maps,
vector-valued calculus of variations in $L^\infty$,
vector-valued optimal Lipschitz extensions,
quasi-conformal maps,
Aronsson PDE,
rigidity.
Received by editor(s):
June 4, 2012
Received by editor(s) in revised form:
September 7, 2012
Published electronically:
May 5, 2014
Communicated by:
Chuu-Lian Terng
Article copyright:
© Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.