Virtually splitting the map from $\operatorname {Aut}(G)$ to $\operatorname {Out}(G)$
HTML articles powered by AMS MathViewer
- by Mathieu Carette
- Proc. Amer. Math. Soc. 143 (2015), 543-554
- DOI: https://doi.org/10.1090/S0002-9939-2014-12278-7
- Published electronically: October 10, 2014
- PDF | Request permission
Abstract:
We give an elementary criterion on a group $G$ for the map $\operatorname {Aut}(G)$ $\to \operatorname {Out}(G)$ to split virtually. This criterion applies to many residually finite $\operatorname {CAT}(0)$ groups and hyperbolic groups, and in particular to all finitely generated Coxeter groups. As a consequence the outer automorphism group of any finitely generated Coxeter group is residually finite and virtually torsion-free.References
- Gilbert Baumslag, Automorphism groups of residually finite groups, J. London Math. Soc. 38 (1963), 117–118. MR 146271, DOI 10.1112/jlms/s1-38.1.117
- Mladen Bestvina, Questions in geometric group theory, Available at http://www.math.utah.edu/˜bestvina.
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- Brian H. Bowditch, Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998), no. 2, 145–186. MR 1638764, DOI 10.1007/BF02392898
- Inna Bumagin and Daniel T. Wise, Every group is an outer automorphism group of a finitely generated group, J. Pure Appl. Algebra 200 (2005), no. 1-2, 137–147. MR 2142354, DOI 10.1016/j.jpaa.2004.12.033
- Mathieu Carette, The automorphism group of accessible groups, J. Lond. Math. Soc. (2) 84 (2011), no. 3, 731–748. MR 2855799, DOI 10.1112/jlms/jdr029
- Pierre-Emmanuel Caprace and Ashot Minasyan, On conjugacy separability of some Coxeter groups and parabolic-preserving automorphisms, to appear in Illinois J. Math., http://arxiv.org/abs/1210.4328, 2012.
- Pierre-Emmanuel Caprace and Piotr Przytycki, Twist-rigid Coxeter groups, Geom. Topol. 14 (2010), no. 4, 2243–2275. MR 2740646, DOI 10.2140/gt.2010.14.2243
- Ruth Charney and Karen Vogtmann, Subgroups and quotients of automorphism groups of RAAGs, Low-dimensional and symplectic topology, Proc. Sympos. Pure Math., vol. 82, Amer. Math. Soc., Providence, RI, 2011, pp. 9–27. MR 2768650, DOI 10.1090/pspum/082/2768650
- Sheila C. Chagas and Pavel A. Zalesskii, Finite index subgroups of conjugacy separable groups, Forum Math. 21 (2009), no. 2, 347–353. MR 2503309, DOI 10.1515/FORUM.2009.016
- Michael W. Davis, The geometry and topology of Coxeter groups, London Mathematical Society Monographs Series, vol. 32, Princeton University Press, Princeton, NJ, 2008. MR 2360474
- Vincent Guirardel and Gilbert Levitt, Splittings and automorphisms of relatively hyperbolic groups, to appear in Groups, Geom. and Dyn., http://arxiv.org/abs/1212.1434v1, 2012.
- A. V. Goryaga, Example of a finite extension of an FAC-group that is not an FAC-group, Sibirsk. Mat. Zh. 27 (1986), no. 3, 203–205, 225 (Russian). MR 853899
- Mauricio Gutierrez, Adam Piggott, and Kim Ruane, On the automorphisms of a graph product of abelian groups, Groups Geom. Dyn. 6 (2012), no. 1, 125–153. MR 2888948, DOI 10.4171/GGD/153
- Edna K. Grossman, On the residual finiteness of certain mapping class groups, J. London Math. Soc. (2) 9 (1974/75), 160–164. MR 405423, DOI 10.1112/jlms/s2-9.1.160
- Lynne D. James, Complexes and Coxeter groups—operations and outer automorphisms, J. Algebra 113 (1988), no. 2, 339–345. MR 929764, DOI 10.1016/0021-8693(88)90163-9
- Gilbert Levitt, Automorphisms of hyperbolic groups and graphs of groups, Geom. Dedicata 114 (2005), 49–70. MR 2174093, DOI 10.1007/s10711-004-1492-1
- Gilbert Levitt and Ashot Minasyan, Residual properties of automorphism groups of (relatively) hyperbolic groups, to appear in Geom. and Topol., http://arxiv.org/abs/1305.5403, 2013.
- Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89, Springer-Verlag, Berlin-New York, 1977. MR 0577064
- Alexander Lubotzky, Normal automorphisms of free groups, J. Algebra 63 (1980), no. 2, 494–498. MR 570726, DOI 10.1016/0021-8693(80)90086-1
- G. Mess, Unit tangent bundle subgroups of mapping class groups, IHES preprint, 1990.
- Ashot Minasyan, Groups with finitely many conjugacy classes and their automorphisms, Comment. Math. Helv. 84 (2009), no. 2, 259–296. MR 2495795, DOI 10.4171/CMH/162
- Ashot Minasyan, Hereditary conjugacy separability of right-angled Artin groups and its applications, Groups Geom. Dyn. 6 (2012), no. 2, 335–388. MR 2914863, DOI 10.4171/GGD/160
- Armando Martino and Ashot Minasyan, Conjugacy in normal subgroups of hyperbolic groups, Forum Math. 24 (2012), no. 5, 889–910. MR 2988566, DOI 10.1515/form.2011.089
- A. Minasyan and D. Osin, Normal automorphisms of relatively hyperbolic groups, Trans. Amer. Math. Soc. 362 (2010), no. 11, 6079–6103. MR 2661509, DOI 10.1090/S0002-9947-2010-05067-6
- Nicolas Monod, Superrigidity for irreducible lattices and geometric splitting, J. Amer. Math. Soc. 19 (2006), no. 4, 781–814. MR 2219304, DOI 10.1090/S0894-0347-06-00525-X
- Gabor Moussong, Hyperbolic Coxeter groups, ProQuest LLC, Ann Arbor, MI, 1988. Thesis (Ph.D.)–The Ohio State University. MR 2636665
- Bernhard Mühlherr, Automorphisms of graph-universal Coxeter groups, J. Algebra 200 (1998), no. 2, 629–649. MR 1610676, DOI 10.1006/jabr.1997.7230
- Bernhard Mühlherr, The isomorphism problem for Coxeter groups, The Coxeter legacy, Amer. Math. Soc., Providence, RI, 2006, pp. 1–15. MR 2209018
- B. B. Newman, Some results on one-relator groups, Bull. Amer. Math. Soc. 74 (1968), 568–571. MR 222152, DOI 10.1090/S0002-9904-1968-12012-9
- Frédéric Paulin, Outer automorphisms of hyperbolic groups and small actions on $\textbf {R}$-trees, Arboreal group theory (Berkeley, CA, 1988) Math. Sci. Res. Inst. Publ., vol. 19, Springer, New York, 1991, pp. 331–343. MR 1105339, DOI 10.1007/978-1-4612-3142-4_{1}2
- Kim E. Ruane, Dynamics of the action of a $\textrm {CAT}(0)$ group on the boundary, Geom. Dedicata 84 (2001), no. 1-3, 81–99. MR 1825346, DOI 10.1023/A:1010301824765
- Z. Sela, Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank $1$ Lie groups. II, Geom. Funct. Anal. 7 (1997), no. 3, 561–593. MR 1466338, DOI 10.1007/s000390050019
- Jacques Tits, Sur le groupe des automorphismes de certains groupes de Coxeter, J. Algebra 113 (1988), no. 2, 346–357 (French). MR 929765, DOI 10.1016/0021-8693(88)90164-0
- Daniel T. Wise, Research announcement: the structure of groups with a quasiconvex hierarchy, Electron. Res. Announc. Math. Sci. 16 (2009), 44–55. MR 2558631, DOI 10.3934/era.2009.16.44
Bibliographic Information
- Mathieu Carette
- Affiliation: Université catholique de Louvain, IRMP, Chemin du Cyclotron 2, bte L7.01.01, 1348 Louvain-la-Neuve, Belgium
- Email: mathieu.carette@uclouvain.be
- Received by editor(s): February 19, 2013
- Received by editor(s) in revised form: May 23, 2013
- Published electronically: October 10, 2014
- Additional Notes: The author is a Postdoctoral Researcher of the F.R.S.-FNRS (Belgium).
- Communicated by: Pham Huu Tiep
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 143 (2015), 543-554
- MSC (2010): Primary 20F28; Secondary 20E36, 20F55, 20F67
- DOI: https://doi.org/10.1090/S0002-9939-2014-12278-7
- MathSciNet review: 3283643