A new quantitative two weight theorem for the Hardy-Littlewood maximal operator
HTML articles powered by AMS MathViewer
- by Carlos Pérez and Ezequiel Rela
- Proc. Amer. Math. Soc. 143 (2015), 641-655
- DOI: https://doi.org/10.1090/S0002-9939-2014-12353-7
- Published electronically: October 22, 2014
- PDF | Request permission
Abstract:
A quantitative two weight theorem for the Hardy-Littlewood maximal operator is proved, improving the known ones. As a consequence, a new proof of the main results in papers by Hytönen and the first author and Hytönen, the first author and Rela is obtained which avoids the use of the sharp quantitative reverse Holder inequality for $A_{\infty }$ proved in those papers. Our results are valid within the context of spaces of homogeneous type without imposing the non-empty annuli condition.References
- Hugo Aimar, Singular integrals and approximate identities on spaces of homogeneous type, Trans. Amer. Math. Soc. 292 (1985), no. 1, 135–153. MR 805957, DOI 10.1090/S0002-9947-1985-0805957-9
- Hugo Aimar and Roberto A. Macías, Weighted norm inequalities for the Hardy-Littlewood maximal operator on spaces of homogeneous type, Proc. Amer. Math. Soc. 91 (1984), no. 2, 213–216. MR 740173, DOI 10.1090/S0002-9939-1984-0740173-5
- Oleksandra Beznosova and Alexander Reznikov, Equivalent definitions of dyadic Muckenhoupt and reverse Hölder classes in terms of Carleson sequences, weak classes, and comparability of dyadic ${L}\log {L}$ and ${A}_\infty$ constants. Preprint, arXiv:1201.0520 (2012).
- Javier Duoandikoetxea, Francisco Martín-Reyes, and Sheldy Ombrosi, On the $A_\infty$ conditions for general bases. 2013. Private communication.
- Nobuhiko Fujii, Weighted bounded mean oscillation and singular integrals, Math. Japon. 22 (1977/78), no. 5, 529–534. MR 481968
- José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149
- Ioseb Genebashvili, Amiran Gogatishvili, Vakhtang Kokilashvili, and Miroslav Krbec, Weight theory for integral transforms on spaces of homogeneous type, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 92, Longman, Harlow, 1998. MR 1791462
- Tuomas Hytönen and Carlos Pérez, Sharp weighted bounds involving $A_\infty$, Anal. PDE 6 (2013), no. 4, 777–818. MR 3092729, DOI 10.2140/apde.2013.6.777
- Tuomas Hytönen, Carlos Pérez, and Ezequiel Rela, Sharp reverse Hölder property for $A_\infty$ weights on spaces of homogeneous type, J. Funct. Anal. 263 (2012), no. 12, 3883–3899. MR 2990061, DOI 10.1016/j.jfa.2012.09.013
- Sergei V. Hruščev, A description of weights satisfying the $A_{\infty }$ condition of Muckenhoupt, Proc. Amer. Math. Soc. 90 (1984), no. 2, 253–257. MR 727244, DOI 10.1090/S0002-9939-1984-0727244-4
- Anna Kairema, Two-weight norm inequalities for potential type and maximal operators in a metric space, Publ. Mat. 57 (2013), no. 1, 3–56. MR 3058926, DOI 10.5565/PUBLMAT_{5}7113_{0}1
- Liguang Liu and Teresa Luque. A ${B}_p$ condition for the strong maximal function. Trans. Amer. Math. Soc. (to appear).
- Andrei K. Lerner and Kabe Moen. Mixed $A_p$-$A_\infty$ estimates with one supremum. Preprint, arXiv:1212.0571 (2013).
- Kabe Moen, Sharp one-weight and two-weight bounds for maximal operators, Studia Math. 194 (2009), no. 2, 163–180. MR 2534183, DOI 10.4064/sm194-2-4
- Mieczysław Mastyło and Carlos Pérez, The maximal operators between banach function spaces, Indiana Univ. Math. J. (To appear).
- Roberto A. Macías and Carlos Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), no. 3, 257–270. MR 546295, DOI 10.1016/0001-8708(79)90012-4
- C. J. Neugebauer, Inserting $A_{p}$-weights, Proc. Amer. Math. Soc. 87 (1983), no. 4, 644–648. MR 687633, DOI 10.1090/S0002-9939-1983-0687633-2
- C. Pérez, On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted $L^p$-spaces with different weights, Proc. London Math. Soc. (3) 71 (1995), no. 1, 135–157. MR 1327936, DOI 10.1112/plms/s3-71.1.135
- Gladis Pradolini and Oscar Salinas, Maximal operators on spaces of homogeneous type, Proc. Amer. Math. Soc. 132 (2004), no. 2, 435–441. MR 2022366, DOI 10.1090/S0002-9939-03-07079-5
- Carlos Pérez and Richard L. Wheeden, Uncertainty principle estimates for vector fields, J. Funct. Anal. 181 (2001), no. 1, 146–188. MR 1818113, DOI 10.1006/jfan.2000.3711
- Eric T. Sawyer, A characterization of a two-weight norm inequality for maximal operators, Studia Math. 75 (1982), no. 1, 1–11. MR 676801, DOI 10.4064/sm-75-1-1-11
- E. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. 114 (1992), no. 4, 813–874. MR 1175693, DOI 10.2307/2374799
- J. Michael Wilson, Weighted inequalities for the dyadic square function without dyadic $A_\infty$, Duke Math. J. 55 (1987), no. 1, 19–50. MR 883661, DOI 10.1215/S0012-7094-87-05502-5
Bibliographic Information
- Carlos Pérez
- Affiliation: Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, 41080 Sevilla, Spain
- Email: carlosperez@us.es
- Ezequiel Rela
- Affiliation: Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, 41080 Sevilla, Spain
- MR Author ID: 887397
- Email: erela@us.es
- Received by editor(s): April 26, 2013
- Published electronically: October 22, 2014
- Additional Notes: Both authors were supported by the Spanish Ministry of Science and Innovation grant MTM2012-30748 and by the Junta de Andalucía, grant FQM-4745.
- Communicated by: Alexander Iosevich
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 143 (2015), 641-655
- MSC (2010): Primary 42B25; Secondary 43A85
- DOI: https://doi.org/10.1090/S0002-9939-2014-12353-7
- MathSciNet review: 3283651