Indecomposable modules for the dual immaculate basis of quasi-symmetric functions
HTML articles powered by AMS MathViewer
- by Chris Berg, Nantel Bergeron, Franco Saliola, Luis Serrano and Mike Zabrocki
- Proc. Amer. Math. Soc. 143 (2015), 991-1000
- DOI: https://doi.org/10.1090/S0002-9939-2014-12298-2
- Published electronically: October 28, 2014
- PDF | Request permission
Abstract:
We construct indecomposable modules for the $0$-Hecke algebra whose characteristics are the dual immaculate basis of the quasi-symmetric functions.References
- Marcelo Aguiar, Nantel Bergeron, and Frank Sottile, Combinatorial Hopf algebras and generalized Dehn-Sommerville relations, Compos. Math. 142 (2006), no. 1, 1–30. MR 2196760, DOI 10.1112/S0010437X0500165X
- C. Berg, N. Bergeron, F. Saliola, L. Serrano and M. Zabrocki, A lift of the Schur and Hall-Littlewood bases to non-commutative symmetric functions, arXiv:1208.5191, to appear, Canadian Journal of Mathematics, doi:10.4153/CJM-2013-013-0.
- C. Berg, N. Bergeron, F. Saliola, L. Serrano and M. Zabrocki, Multiplicative structures of the immaculate basis of non-commutative symmetric functions, arXiv:1305.4700.
- Gérard Duchamp, Daniel Krob, Bernard Leclerc, and Jean-Yves Thibon, Fonctions quasi-symétriques, fonctions symétriques non commutatives et algèbres de Hecke à $q=0$, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 2, 107–112 (French, with English and French summaries). MR 1373744
- Ira M. Gessel, Multipartite $P$-partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983) Contemp. Math., vol. 34, Amer. Math. Soc., Providence, RI, 1984, pp. 289–317. MR 777705, DOI 10.1090/conm/034/777705
- Israel M. Gelfand, Daniel Krob, Alain Lascoux, Bernard Leclerc, Vladimir S. Retakh, and Jean-Yves Thibon, Noncommutative symmetric functions, Adv. Math. 112 (1995), no. 2, 218–348. MR 1327096, DOI 10.1006/aima.1995.1032
- Ira M. Gessel and Christophe Reutenauer, Counting permutations with given cycle structure and descent set, J. Combin. Theory Ser. A 64 (1993), no. 2, 189–215. MR 1245159, DOI 10.1016/0097-3165(93)90095-P
- N. Jacobson, Basic algebra 2, (2nd ed.), Dover.
- Daniel Krob and Jean-Yves Thibon, Noncommutative symmetric functions. IV. Quantum linear groups and Hecke algebras at $q=0$, J. Algebraic Combin. 6 (1997), no. 4, 339–376. MR 1471894, DOI 10.1023/A:1008673127310
- Clauda Malvenuto and Christophe Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra 177 (1995), no. 3, 967–982. MR 1358493, DOI 10.1006/jabr.1995.1336
- P. N. Norton, $0$-Hecke algebras, J. Austral. Math. Soc. Ser. A 27 (1979), no. 3, 337–357. MR 532754
- Bruce E. Sagan, The symmetric group, 2nd ed., Graduate Texts in Mathematics, vol. 203, Springer-Verlag, New York, 2001. Representations, combinatorial algorithms, and symmetric functions. MR 1824028, DOI 10.1007/978-1-4757-6804-6
- W. A. Stein et al. Sage Mathematics Software (Version 4.3.3), The Sage Development Team, 2010, http://www.sagemath.org.
- The Sage-Combinat community. Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics, http://combinat. sagemath.org, 2008.
- Richard P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J. Combin. 5 (1984), no. 4, 359–372. MR 782057, DOI 10.1016/S0195-6698(84)80039-6
- Jean-Yves Thibon, Lectures on noncommutative symmetric functions, Interaction of combinatorics and representation theory, MSJ Mem., vol. 11, Math. Soc. Japan, Tokyo, 2001, pp. 39–94. MR 1862149
- J. Y. Thibon, Introduction to noncommutative symmetric functions, From Numbers and Languages to (Quantum) Cryptography, NATO Security through Science Series: Information and Communication Security, Volume 7.
Bibliographic Information
- Chris Berg
- Affiliation: Department of Mathematics, Université du Québec à Montréal, Montréal, Quebec H3C 3P8, Canada
- Email: cberg@lacim.ca
- Nantel Bergeron
- Affiliation: Fields Institute, Toronto, Ontario M5T 3J1, Canada
- Address at time of publication: Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
- Email: bergeron@yorku.ca
- Franco Saliola
- Affiliation: Department of Mathematics, Université du Québec à Montréal, Montréal, Quebec H3C 3P8, Canada
- MR Author ID: 751343
- Email: saliola@gmail.com
- Luis Serrano
- Affiliation: Department of Mathematics, Université du Québec à Montréal, Montréal, Quebec H3C 3P8, Canada
- Email: serrano@lacim.ca
- Mike Zabrocki
- Affiliation: Fields Institute, Toronto, Ontario M5T 3J1, Canada
- Email: zabrocki@mathstat.yorku.ca
- Received by editor(s): May 21, 2014
- Received by editor(s) in revised form: July 3, 2013
- Published electronically: October 28, 2014
- Communicated by: Jim Haglund
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 143 (2015), 991-1000
- MSC (2010): Primary 05E05, 05E10, 20C08; Secondary 14N15, 20C30
- DOI: https://doi.org/10.1090/S0002-9939-2014-12298-2
- MathSciNet review: 3293717