Mahler measure and the WZ algorithm
HTML articles powered by AMS MathViewer
- by Jesús Guillera and Mathew Rogers
- Proc. Amer. Math. Soc. 143 (2015), 2873-2886
- DOI: https://doi.org/10.1090/S0002-9939-2015-12240-X
- Published electronically: March 18, 2015
- PDF | Request permission
Abstract:
We use the Wilf-Zeilberger method to prove identities between Mahler measures of polynomials. In particular, we offer a new proof of a formula due to Lalín, and we show how to translate the identity into a formula involving elliptic dilogarithms. This work settles a challenge problem proposed by Kontsevich and Zagier in their paper, “Periods”.References
- Necdet Batir, Integral representations of some series involving ${2k\choose k}^{-1}k^{-n}$ and some related series, Appl. Math. Comput. 147 (2004), no. 3, 645–667. MR 2011078, DOI 10.1016/S0096-3003(02)00802-0
- Bruce C. Berndt, Ramanujan’s notebooks. Part III, Springer-Verlag, New York, 1991. MR 1117903, DOI 10.1007/978-1-4612-0965-2
- Bruce C. Berndt, Ramanujan’s notebooks. Part V, Springer-Verlag, New York, 1998. MR 1486573, DOI 10.1007/978-1-4612-1624-7
- Marie José Bertin, Mesure de Mahler et régulateur elliptique: preuve de deux relations “exotiques”, Number theory, CRM Proc. Lecture Notes, vol. 36, Amer. Math. Soc., Providence, RI, 2004, pp. 1–12 (French, with French summary). MR 2076562, DOI 10.1090/crmp/036/01
- S. Bloch and D. Grayson, $K_2$ and $L$-functions of elliptic curves: computer calculations, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 79–88. MR 862631, DOI 10.1090/conm/055.1/862631
- J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi’s identity and the AGM, Trans. Amer. Math. Soc. 323 (1991), no. 2, 691–701. MR 1010408, DOI 10.1090/S0002-9947-1991-1010408-0
- David W. Boyd, Mahler’s measure and special values of $L$-functions, Experiment. Math. 7 (1998), no. 1, 37–82. MR 1618282
- D. V. Chudnovsky and G. V. Chudnovsky, Approximations and complex multiplication according to Ramanujan, Ramanujan revisited (Urbana-Champaign, Ill., 1987) Academic Press, Boston, MA, 1988, pp. 375–472. MR 938975
- Christopher Deninger, Deligne periods of mixed motives, $K$-theory and the entropy of certain $\textbf {Z}^n$-actions, J. Amer. Math. Soc. 10 (1997), no. 2, 259–281. MR 1415320, DOI 10.1090/S0894-0347-97-00228-2
- A. B. Goncharov and A. M. Levin, Zagier’s conjecture on $L(E,2)$, Invent. Math. 132 (1998), no. 2, 393–432. MR 1621432, DOI 10.1007/s002220050228
- William Gosper, Strip mining in the abandoned orefields of nineteenth century mathematics, Computers in mathematics (Stanford, CA, 1986) Lecture Notes in Pure and Appl. Math., vol. 125, Dekker, New York, 1990, pp. 261–284. MR 1068539
- Jesús Guillera, Hypergeometric identities for 10 extended Ramanujan-type series, Ramanujan J. 15 (2008), no. 2, 219–234. MR 2377577, DOI 10.1007/s11139-007-9074-0
- J. Guillera and W. Zudilin, Ramanujan type formulae for $1/\pi$: The art of translation, in The Legacy of Srinivasa Ramanujan, R. Balasubramanian et al. (eds.), Ramanujan Math. Soc. Lecture Notes Series 20 (2013), 181-195.
- Maxim Kontsevich and Don Zagier, Periods, Mathematics unlimited—2001 and beyond, Springer, Berlin, 2001, pp. 771–808. MR 1852188
- Nobushige Kurokawa and Hiroyuki Ochiai, Mahler measures via the crystalization, Comment. Math. Univ. St. Pauli 54 (2005), no. 2, 121–137. MR 2199576
- Matilde N. Lalín, On a conjecture by Boyd, Int. J. Number Theory 6 (2010), no. 3, 705–711. MR 2652904, DOI 10.1142/S1793042110003174
- Matilde N. Lalin and Mathew D. Rogers, Functional equations for Mahler measures of genus-one curves, Algebra Number Theory 1 (2007), no. 1, 87–117. MR 2336636, DOI 10.2140/ant.2007.1.87
- Marko Petkovšek, Herbert S. Wilf, and Doron Zeilberger, $A=B$, A K Peters, Ltd., Wellesley, MA, 1996. With a foreword by Donald E. Knuth; With a separately available computer disk. MR 1379802
- Fernando Rodriguez-Villegas, Identities between Mahler measures, Number theory for the millennium, III (Urbana, IL, 2000) A K Peters, Natick, MA, 2002, pp. 223–229. MR 1956277
- F. Rodriguez Villegas, Modular Mahler measures. I, Topics in number theory (University Park, PA, 1997) Math. Appl., vol. 467, Kluwer Acad. Publ., Dordrecht, 1999, pp. 17–48. MR 1691309
- Mathew Rogers, Hypergeometric formulas for lattice sums and Mahler measures, Int. Math. Res. Not. IMRN 17 (2011), 4027–4058. MR 2836402, DOI 10.1093/imrn/rnq240
- Boonrod Yuttanan, Modular equations and Ramanujan’s cubic and quartic theories of theta functions, ProQuest LLC, Ann Arbor, MI, 2011. Thesis (Ph.D.)–University of Illinois at Urbana-Champaign. MR 3029682
- Mathew Rogers and Wadim Zudilin, On the Mahler measure of $1+X+1/X+Y+1/Y$, Int. Math. Res. Not. IMRN 9 (2014), 2305–2326. MR 3207368, DOI 10.1093/imrn/rns285
- J. Voight, Aspects of complex multiplication, Course notes taken from a seminar taught by Don Zagier.
- E. W. Weisstein, “Dougall’s Theorem.” From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/DougallsTheorem.html
- E. W. Weisstein, “Elliptic Invariants.” From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/EllipticInvariants.html
- Herbert S. Wilf and Doron Zeilberger, Rational functions certify combinatorial identities, J. Amer. Math. Soc. 3 (1990), no. 1, 147–158. MR 1007910, DOI 10.1090/S0894-0347-1990-1007910-7
Bibliographic Information
- Jesús Guillera
- Affiliation: Av. Cesáreo Alierta, 31 esc. izda 4$^\circ$–A, Zaragoza, Spain
- Email: jguillera@gmail.com
- Mathew Rogers
- Affiliation: Department of Mathematics, Université de Montréal, Montreal, Quebec, Canada
- MR Author ID: 757548
- ORCID: 0000-0001-9163-4890
- Email: mathewrogers@gmail.com
- Received by editor(s): March 6, 2013
- Received by editor(s) in revised form: March 29, 2013
- Published electronically: March 18, 2015
- Additional Notes: The second author was supported by the National Science Foundation award DMS-0803107.
- Communicated by: Matthew A. Papanikolas
- © Copyright 2015
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 143 (2015), 2873-2886
- MSC (2010): Primary 33C20, 33F10; Secondary 19F27
- DOI: https://doi.org/10.1090/S0002-9939-2015-12240-X
- MathSciNet review: 3336612