## Mahler measure and the WZ algorithm

HTML articles powered by AMS MathViewer

- by Jesús Guillera and Mathew Rogers PDF
- Proc. Amer. Math. Soc.
**143**(2015), 2873-2886 Request permission

## Abstract:

We use the Wilf-Zeilberger method to prove identities between Mahler measures of polynomials. In particular, we offer a new proof of a formula due to Lalín, and we show how to translate the identity into a formula involving elliptic dilogarithms. This work settles a challenge problem proposed by Kontsevich and Zagier in their paper, “Periods”.## References

- Necdet Batir,
*Integral representations of some series involving ${2k\choose k}^{-1}k^{-n}$ and some related series*, Appl. Math. Comput.**147**(2004), no. 3, 645–667. MR**2011078**, DOI 10.1016/S0096-3003(02)00802-0 - Bruce C. Berndt,
*Ramanujan’s notebooks. Part III*, Springer-Verlag, New York, 1991. MR**1117903**, DOI 10.1007/978-1-4612-0965-2 - Bruce C. Berndt,
*Ramanujan’s notebooks. Part V*, Springer-Verlag, New York, 1998. MR**1486573**, DOI 10.1007/978-1-4612-1624-7 - Marie José Bertin,
*Mesure de Mahler et régulateur elliptique: preuve de deux relations “exotiques”*, Number theory, CRM Proc. Lecture Notes, vol. 36, Amer. Math. Soc., Providence, RI, 2004, pp. 1–12 (French, with French summary). MR**2076562**, DOI 10.1090/crmp/036/01 - S. Bloch and D. Grayson,
*$K_2$ and $L$-functions of elliptic curves: computer calculations*, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 79–88. MR**862631**, DOI 10.1090/conm/055.1/862631 - J. M. Borwein and P. B. Borwein,
*A cubic counterpart of Jacobi’s identity and the AGM*, Trans. Amer. Math. Soc.**323**(1991), no. 2, 691–701. MR**1010408**, DOI 10.1090/S0002-9947-1991-1010408-0 - David W. Boyd,
*Mahler’s measure and special values of $L$-functions*, Experiment. Math.**7**(1998), no. 1, 37–82. MR**1618282** - D. V. Chudnovsky and G. V. Chudnovsky,
*Approximations and complex multiplication according to Ramanujan*, Ramanujan revisited (Urbana-Champaign, Ill., 1987) Academic Press, Boston, MA, 1988, pp. 375–472. MR**938975** - Christopher Deninger,
*Deligne periods of mixed motives, $K$-theory and the entropy of certain $\textbf {Z}^n$-actions*, J. Amer. Math. Soc.**10**(1997), no. 2, 259–281. MR**1415320**, DOI 10.1090/S0894-0347-97-00228-2 - A. B. Goncharov and A. M. Levin,
*Zagier’s conjecture on $L(E,2)$*, Invent. Math.**132**(1998), no. 2, 393–432. MR**1621432**, DOI 10.1007/s002220050228 - William Gosper,
*Strip mining in the abandoned orefields of nineteenth century mathematics*, Computers in mathematics (Stanford, CA, 1986) Lecture Notes in Pure and Appl. Math., vol. 125, Dekker, New York, 1990, pp. 261–284. MR**1068539** - Jesús Guillera,
*Hypergeometric identities for 10 extended Ramanujan-type series*, Ramanujan J.**15**(2008), no. 2, 219–234. MR**2377577**, DOI 10.1007/s11139-007-9074-0 - J. Guillera and W. Zudilin,
*Ramanujan type formulae for $1/\pi$: The art of translation*, in The Legacy of Srinivasa Ramanujan, R. Balasubramanian et al. (eds.), Ramanujan Math. Soc. Lecture Notes Series 20 (2013), 181-195. - Maxim Kontsevich and Don Zagier,
*Periods*, Mathematics unlimited—2001 and beyond, Springer, Berlin, 2001, pp. 771–808. MR**1852188** - Nobushige Kurokawa and Hiroyuki Ochiai,
*Mahler measures via the crystalization*, Comment. Math. Univ. St. Pauli**54**(2005), no. 2, 121–137. MR**2199576** - Matilde N. Lalín,
*On a conjecture by Boyd*, Int. J. Number Theory**6**(2010), no. 3, 705–711. MR**2652904**, DOI 10.1142/S1793042110003174 - Matilde N. Lalin and Mathew D. Rogers,
*Functional equations for Mahler measures of genus-one curves*, Algebra Number Theory**1**(2007), no. 1, 87–117. MR**2336636**, DOI 10.2140/ant.2007.1.87 - Marko Petkovšek, Herbert S. Wilf, and Doron Zeilberger,
*$A=B$*, A K Peters, Ltd., Wellesley, MA, 1996. With a foreword by Donald E. Knuth; With a separately available computer disk. MR**1379802** - Fernando Rodriguez-Villegas,
*Identities between Mahler measures*, Number theory for the millennium, III (Urbana, IL, 2000) A K Peters, Natick, MA, 2002, pp. 223–229. MR**1956277** - F. Rodriguez Villegas,
*Modular Mahler measures. I*, Topics in number theory (University Park, PA, 1997) Math. Appl., vol. 467, Kluwer Acad. Publ., Dordrecht, 1999, pp. 17–48. MR**1691309** - Mathew Rogers,
*Hypergeometric formulas for lattice sums and Mahler measures*, Int. Math. Res. Not. IMRN**17**(2011), 4027–4058. MR**2836402**, DOI 10.1093/imrn/rnq240 - Boonrod Yuttanan,
*Modular equations and Ramanujan’s cubic and quartic theories of theta functions*, ProQuest LLC, Ann Arbor, MI, 2011. Thesis (Ph.D.)–University of Illinois at Urbana-Champaign. MR**3029682** - Mathew Rogers and Wadim Zudilin,
*On the Mahler measure of $1+X+1/X+Y+1/Y$*, Int. Math. Res. Not. IMRN**9**(2014), 2305–2326. MR**3207368**, DOI 10.1093/imrn/rns285 - J. Voight,
*Aspects of complex multiplication*, Course notes taken from a seminar taught by Don Zagier. - E. W. Weisstein, “Dougall’s Theorem.” From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/DougallsTheorem.html
- E. W. Weisstein, “Elliptic Invariants.” From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/EllipticInvariants.html
- Herbert S. Wilf and Doron Zeilberger,
*Rational functions certify combinatorial identities*, J. Amer. Math. Soc.**3**(1990), no. 1, 147–158. MR**1007910**, DOI 10.1090/S0894-0347-1990-1007910-7

## Additional Information

**Jesús Guillera**- Affiliation: Av. Cesáreo Alierta, 31 esc. izda 4$^\circ$–A, Zaragoza, Spain
- Email: jguillera@gmail.com
**Mathew Rogers**- Affiliation: Department of Mathematics, Université de Montréal, Montreal, Quebec, Canada
- MR Author ID: 757548
- ORCID: 0000-0001-9163-4890
- Email: mathewrogers@gmail.com
- Received by editor(s): March 6, 2013
- Received by editor(s) in revised form: March 29, 2013
- Published electronically: March 18, 2015
- Additional Notes: The second author was supported by the National Science Foundation award DMS-0803107.
- Communicated by: Matthew A. Papanikolas
- © Copyright 2015
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**143**(2015), 2873-2886 - MSC (2010): Primary 33C20, 33F10; Secondary 19F27
- DOI: https://doi.org/10.1090/S0002-9939-2015-12240-X
- MathSciNet review: 3336612