A characterization for elliptic problems on fractal sets
HTML articles powered by AMS MathViewer
- by Giovanni Molica Bisci and Vicenţiu D. Rădulescu
- Proc. Amer. Math. Soc. 143 (2015), 2959-2968
- DOI: https://doi.org/10.1090/S0002-9939-2015-12475-6
- Published electronically: February 13, 2015
- PDF | Request permission
Abstract:
In this paper we prove a characterization theorem on the existence of one non-zero strong solution for elliptic equations defined on the Sierpiński gasket. More generally, the validity of our result can be checked studying elliptic equations defined on self-similar fractal domains whose spectral dimension $\nu \in (0,2)$. Our theorem can be viewed as an elliptic version on fractal domains of a recent contribution obtained in a recent work of Ricceri for a two-point boundary value problem.References
- Martin T. Barlow and Edwin A. Perkins, Brownian motion on the Sierpiński gasket, Probab. Theory Related Fields 79 (1988), no. 4, 543–623. MR 966175, DOI 10.1007/BF00318785
- Brigitte E. Breckner, Vicenţiu D. Rădulescu, and Csaba Varga, Infinitely many solutions for the Dirichlet problem on the Sierpinski gasket, Anal. Appl. (Singap.) 9 (2011), no. 3, 235–248. MR 2823874, DOI 10.1142/S0219530511001844
- Brigitte E. Breckner, Dušan Repovš, and Csaba Varga, On the existence of three solutions for the Dirichlet problem on the Sierpinski gasket, Nonlinear Anal. 73 (2010), no. 9, 2980–2990. MR 2678659, DOI 10.1016/j.na.2010.06.064
- Philippe G. Ciarlet, Linear and nonlinear functional analysis with applications, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2013. MR 3136903
- Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
- K. J. Falconer, Semilinear PDEs on self-similar fractals, Comm. Math. Phys. 206 (1999), no. 1, 235–245. MR 1736985, DOI 10.1007/s002200050703
- Kenneth Falconer, Fractal geometry, 2nd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2003. Mathematical foundations and applications. MR 2118797, DOI 10.1002/0470013850
- Kenneth Falconer and Jiaxin Hu, Nonlinear elliptic equations on the Sierpiński gasket, J. Math. Anal. Appl. 240 (1999), 552–573.
- M. Fukushima and T. Shima, On a spectral analysis for the Sierpiński gasket, Potential Anal. 1 (1992), no. 1, 1–35. MR 1245223, DOI 10.1007/BF00249784
- Zhenya He, Sublinear elliptic equation on fractal domains, J. Partial Differ. Equ. 24 (2011), no. 2, 97–113. MR 2838837
- Jiaxin Hu, Multiple solutions for a class of nonlinear elliptic equations on the Sierpiński gasket, Sci. China Ser. A 47 (2004), no. 5, 772–786. MR 2127206, DOI 10.1360/02ys0366
- Hua Chen and Zhenya He, Semilinear elliptic equations on fractal sets, Acta Math. Sci. Ser. B (Engl. Ed.) 29 (2009), no. 2, 232–242. MR 2517587, DOI 10.1016/S0252-9602(09)60024-2
- Jun Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc. 335 (1993), no. 2, 721–755. MR 1076617, DOI 10.1090/S0002-9947-1993-1076617-1
- Jun Kigami, Effective resistances for harmonic structures on p.c.f. self-similar sets, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 2, 291–303. MR 1277061, DOI 10.1017/S0305004100072091
- Jun Kigami, Distributions of localized eigenvalues of Laplacians on post critically finite self-similar sets, J. Funct. Anal. 156 (1998), no. 1, 170–198. MR 1632976, DOI 10.1006/jfan.1998.3243
- Jun Kigami, Analysis on fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge, 2001. MR 1840042, DOI 10.1017/CBO9780511470943
- Umberto Mosco, Lagrangian metrics on fractals, Recent advances in partial differential equations, Venice 1996, Proc. Sympos. Appl. Math., vol. 54, Amer. Math. Soc., Providence, RI, 1998, pp. 301–323. MR 1492702, DOI 10.1090/psapm/054/1492702
- Biagio Ricceri, A note on spherical maxima sharing the same Lagrange multiplier, Fixed Point Theory Appl. 2014, 2014: 25.
- Biagio Ricceri, A characterization related to a two-point boundary value problem. To appear in J. Nonlinear Convex Anal.
- Robert S. Strichartz, Some properties of Laplacians on fractals, J. Funct. Anal. 164 (1999), no. 2, 181–208. MR 1695571, DOI 10.1006/jfan.1999.3400
- Robert S. Strichartz, Solvability for differential equations on fractals, J. Anal. Math. 96 (2005), 247–267. MR 2177187, DOI 10.1007/BF02787830
Bibliographic Information
- Giovanni Molica Bisci
- Affiliation: Patrimonio, Architettura e Urbanistica, Department, University of Reggio Calabria, 89124 - Reggio Calabria, Italy
- Email: gmolica@unirc.it
- Vicenţiu D. Rădulescu
- Affiliation: Department of Mathematics, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- MR Author ID: 143765
- ORCID: 0000-0003-4615-5537
- Email: vicentiu.radulescu@math.cnrs.fr
- Received by editor(s): December 27, 2013
- Received by editor(s) in revised form: February 3, 2014, and February 9, 2014
- Published electronically: February 13, 2015
- Communicated by: Catherine Sulem
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 2959-2968
- MSC (2010): Primary 35J20; Secondary 28A80, 35J25, 35J60, 47J30, 49J52
- DOI: https://doi.org/10.1090/S0002-9939-2015-12475-6
- MathSciNet review: 3336620